

15

Automatic Bug Priority Prediction using LSTM and

ANN Approaches during Software Development

D.N.A. Dissanayake1, R.A.H.M. Rupasingha2#, and B.T.G.S. Kumara3
1,2Department of Economics and Statistics, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
3Department of Computing and Information Systems, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka

#hmrupasingha@gmail.com

ABSTRACT The process of manually assign a priority value to a bug report takes time. There is a high chance that a

developer may allocate the wrong value, and this can affect several important software development processes. To address

this problem, the objective of this research incorporates three unique feature extraction approaches to create a model for

automatically predicting the priority of bugs using the Long Short-Term Memory (LSTM) deep learning algorithm and

Artificial Neural Network (ANN) algorithm. First, we collected approximately 20,500 bug reports from the Bugzilla; bug

tracking system. Followed preprocessing, created models using two classifiers and feature vectors including Global Vectors

for Word Representation (GloVe), Term Frequency-Inverse Document Frequency (TF-IDF), and Word2Vec used

individually. The final classification results were determined by comparing the all results of the different models, which

were integrated into an ensemble model. For evaluating the models, accuracy, recall, precision, and f-measure were used.

The ensemble model produced the highest accuracy of 92% than other models as ANN model’s accuracy was 80.28%,

LSTM GloVe model's accuracy was 89.58%, LSTM TF-IDF model's accuracy was 88.94%, LSTM W2V model's accuracy

was 84.84%. And also, higher recall, precision, and f-measure results were found in the ensemble model. Using the

proposed model by LSTM-based ensemble approach we could automatically find the bug priority level of bug reports

efficiently and effectively. In the future studies, intend to gather data from sources other than Bugzilla, such as JIRA or a

GitHub repository. Additionally, try to apply other deep algorithms to improve the accuracy.

INDEX TERMS Bug Priority Prediction, Ensemble Model, LSTM

I. INTRODUCTION

A crucial step in the software development process is software

maintenance which stands for changing, tweaking, and

updating software and its features to produce a better version

of it [1]. Developers and other responsible parties maintain

software for a variety of purposes, including enhancing general

software performance and fixing bugs after the software is

released.

A bug repository is one of the most crucial software

repositories and the most significant database in the software

development process [2]. For updating and keeping

information about problems that emerge or suggestions for

improving the project, many software projects establish and

maintain bug repositories. The people generate, store, update,

and research every software defect in the software repositories.

As a result, developers have to continuously update and

produce different bug reports to aid in the creation and

maintenance of software.

The most crucial task of the software that is being improved is

bug fixing. To improve software systems, developers and

project managers collect bug reports and look at Bug Tracking

Systems (BTS) [3], sometimes referred to as issue tracking

systems, such as JIRA [4] and Bugzilla [5], which assist

developers in handling bug triaging and bug reporting [6].

The performance and quality of software systems may decline

as a result of the numerous defects that exist in them. It is

impossible to produce error-free software and many projects

will be delivered with flaws because bugs are a regular

occurrence [7]. Software creators enable users to submit

defects in the BTS to enhance the upcoming version of the

program. The following pre-defined fields are included in a bug

report: the bug ID, content ID, title, error description,

owner/author, status, priority, version, and severity [8]. The

urgency of a defect's remedy is determined by bug priority.

Assigning a bug priority or bug prioritization is a very

important task due to several reasons [9]. It facilitates a deeper

comprehension of the bug and identifies potential solutions.

After finding the bug, we can improve the program architecture

to prevent it from becoming a greater issue. The bug that is

creating the most issues is determined to have the highest

priority. The priority of the bug determines the sequence in

which the developer or project manager should fix it. With P1

denoting the highest priority and P5 denoting the lowest

priority, a bug report's priority is assigned on a scale of P1 to

P5. Bug prioritization is a manual process that requires a lot of

16

time because there are so many bug reports. When a defect is

submitted, a developer looks into it and manually assigns

priority to the pertinent bugs. The term "bug triaging" refers to

this time-consuming manual process carried out by humans

[10]. As a result, the likelihood of improper bug prioritizing is

considerable. There may be a high possibility of incorrect bug

prioritization as well. Automating the process of prioritizing

bug reports is crucial for avoiding this serious problem. In this

study, we suggested to build a model as a solution to the issue

of identifying bugs with the highest priority.

This study's primary goal is to develop a model for

automatically predicting the prioritization of bugs using ANN

algorithm and LSTM deep learning algorithm by combining

three feature extraction methods as a solution for above

mentioned problem.

A bug priority prediction model can be useful in several ways.

The machine learning and deep learning classifiers used for

classifying the text of the bug reports when it comes to

prioritizing bugs. After collecting data, they should pre-

process. Then feature extraction is carried out utilizing three

various techniques including TF-IDF, Word2Vec, GloVe with

the LSTM algorithm and TF-IDF with ANN as algorithm.

Three LSTM results were combined into ensemble model to

take the final classification results with the comparison of

individual model results of ANN and LSTM Models.

Accuracy, recall, precision, and f-measure were used for

measure the evaluation of the models.

The following is a summary of expected contributions of this

paper.

I. Ensemble approach based on LSTM algorithm is

proposed to automatic priority prediction of bug reports

into five priority levels namely P1, P2, P3, P4 and P5.

II. The suggested strategy is based on analysing bug

reports. The proposed methodology for bug priority

prediction provides correct automatic priority levels for

analysing and improving software systems on time.

III. LSTM three individual models, LSTM ensemble

approach and ANN model are compared with each other

to evaluate the performance of the proposed approach.

This paper is organized as follows. In Section 2, review existing

literature. Section 3 explains the proposed methodologies.

Research finding and evaluation of the results shown in Section

4. Finally, in Section 5 concludes the paper and discusses the

recommendation.

II. LITERATURE REVIEW

A. Related Work

To identify the uniqueness of our research, it is important to

review the existing literature in knowledge. The majority of

current studies have used deep neural techniques, and relied on

machine learning algorithms to forecast the priority levels in a

bug report. We perform a critical analysis of the preceding

works to show the originality of our study.

There were basically two main paths in early studies under the

topic of bug report such as priority prediction and severity

prediction [11]. Priority prediction of bug reports was recently

carried out [12], using a CNN-based technique. Utilizing

Natural Language Processing (NLP) techniques, done

preprocessing on data bug descriptions, and created a

classification model utilizing TCN, CNN, and SVM

algorithms. Accuracy, Recall, Precision, and F1-score were

used to evaluate how well the generated models performed.

This study used a deep neural network-based algorithm, NLP

techniques, and feature extractions to anticipate the priority

levels of bug reports. And research findings state that CNN is

best for priority prediction according to their study.

In order to eliminate manual bug prioritizing in [10], a software

engineering domain repository was utilized to train and

calculate the emotion value using emotion analysis. Based on

input data, the CNN classifier makes a priority suggestion. The

priority suggestions for the reports gathered from the Bugzilla

and Eclipse projects were made using the CNN prioritization

method. On average, proposed approach improves the F1 value

by more than 6%. As well, some researchers Qasim Umer et al.

[13], propose an automated approach for bug prediction of each

issue report obtained using Eclipse data from the Bugzilla

database. This method is based on emotion words. They

coupled NLP techniques with machine learning algorithms like

SVM, Naive Bayes classifier (NB), and Linear Regression

(LR) to overcome the issue. As we select the LSTM approach

for our study, Hani Bani Salameh et al. [14] constructed a deep

learning RNN- LSTM network with five layers and compared

the results with SVM and KNN for issue prediction based on

more than 2000 JIRA bug reports. Results indicate that for

performance-based accuracy, AUC, and f-measure, LSTM

scored best. As in values, accuracy was 0.908, AUC was 0.95,

and F measure was 0.892.

When it comes to severity prediction, the aim of previous

studies is to investigate automated severity prediction because

manual prioritization is time-consuming and tedious. The study

[15], used NLP as a preprocessing strategy after extracting

information from open-source project data and is based on the

textual description that is under a deep neural network. Deep

learning techniques such as CNN, LSTM, RF, and MNB were

used for training and prediction, with CNN having the highest

accuracy of all techniques. On average, it improves the F- score

by 7.90% according to the results of the study. Additionally,

severity prediction on data gathered through Bugzilla in [16],

was carried out using the Bagging ensemble approach and the

C4.5 classifier. The outcomes of comparing the two approaches

indicate that the C4.5 classifier performs better at predicting

severity of issue reports for cross component context and

closed source software. According to the results J48 classifier

17

gain 79.82% of accuracy while bagging classification

algorithm become highest accuracy among them while

representing 81.27% accuracy.

The approach [17], organizes Mozilla and Eclipse bug reports

into severity categories based on topics, then extracts features

from each topic. Then, by assimilating traits from the LSTM

and CNN algorithms, forecast the severity. In order to estimate

the severity, they feed the CNN with extracted features as its

input, and it uses its output to feed the LSTM. The performance

of the suggested model was assessed by comparing it to the

baseline in order to make better predictions.

Instead of single priority and severity prediction, there were

some areas of researches under hybrid approach in both priority

prediction and severity prediction. According to [18], they

build a hybrid model for predict the defective areas of source

code named CBIL. First using source code, they extracted the

Abstract Syntax Tree (AST) tokens as vectors. Then CNN

extracted the semantics of AST tokens. After that Bi- LSTM

track the key vectors and reject other features to improve the

accuracy of the model. Used dataset were seven open-source

Java projects. According to their results, RNN accomplished

the top performance. Not only that, but also in [19], they

proposed a hybrid model for software defect prediction which

combined SVM and RBF with MRMR feature selection.

According to their results, MRMR gives better performance

compared to SVM. According to other researchers Tanujit and

Ashis proposed a novel hybrid methodology in their study [20],

for improvement of defect prediction for software. In their

study, they prove the theoretical consistency of their proposed

model under more than ten NASA SDP datasets while showing

the superiority of their proposed method.

As well as priority prediction there were some researchers done

severity prediction under hybrid approach such as [21]. In their

study thy proposed an approach for severity prediction based

on the feature selection algorithm of the severity of each topic

of data from Eclipse and Mozilla open-source projects. In the

process they conducted, first classify issue reports by topic-

based severity and extracted features from it. Then severity was

predicted by learning characteristics from the LSTM and CNN

algorithms. The comparison of summary of reviewed papers is

shown in Table 1.

Table 1. Summary of existing studies

Ref.

No

Data

Methodology

Objective/s

Limitations

Overcome limitations

[7] JIRA LSTM,

KNN

 SVM, Provides a framework for

automate predict priority

2000 of small dataset Use more than 20500 of

data

[14] Eclipse project

& Bugzilla

CNN To end manual prioritization of

bug reports

Limited only one feature

extraction

Apply three feature

extraction methods [12] 4 open-source

projects

CNN Predict the bug report's priority

automatically

Limited only one feature

extraction

[13] Bugzilla Emotional

Analysis, SVM

By avoiding manual

Prioritization, predict priority that

help developers to focus bugs

resolution

Only consider emotional

analysis
Considering bug

prioritization using deep

learning algorithms

[15] Bugzilla CNN, LSTM,

RF, MNB

Automate prioritizing the severity Only consider severity

prediction

Based on bug priority

prediction of bug reports

[16] Bugzilla J48 algorithm,

Bagging

algorithm

Find a new technique to avoid

assigning incorrect severity using

bagging ensemble method

Small dataset

Only consider severity

prediction

Increase data set into

20,500

&

Focus on bug priority

prediction

[17] Eclipse and

Mozilla projects

CNN, LSTM Use topic-based feature selection

and CNN-LSTM to predict

severity

Only consider severity

prediction
Based on bug priority

prediction of bug reports

[18] open-source

Java projects

CNN

LSTM

& Bi- Extract the semantics of source

code for software defect prediction

Limited only one feature

extraction

Apply three feature

extraction methods
[19] NASA Metrics

Data Program

SVM & RBF Build a model for effective to deal

with the imbalance datasets in

software defect prediction

Limited only one feature

extraction

[20] NASA SDP

dataset

- Proves the theoretical consistency

of Hellinger net

Provide

base

only theoretical Use algorithms to evaluate

each algorithm

performance, use statistical

measurements to evaluate

models’ effectiveness

18

[22] Eclipse, Mozilla,

Apache, and

NetBeans

datasets

SMOTE &

IFSM

Predict the severity and priority of

software bugs using the IFSM

Small dataset
Increase data set into

20,500

[23] Mozilla, Eclipse,

NetBeans, GCC

CNN, SVM,

Random Forests

& Logistic

Regression,

HAN

Build a Hierarchical Attention

Network (HAN) model for

prioritizing software bug reports

Use GloVe word

embeddings only

Apply three feature

extraction methods

[24] JIRA deployed

by Apache

Empirical study Empirical study to explore the

phenomenon of bug priority

changes

Conduct only empirical

study
Conduct a full approach

using algorithms

B. Research Gap

The majority of existing researchers built a model for bug

prioritization using just one feature vector. Some research used

two feature extraction methods for result comparison and found

a better one. There were no studies conduct combining more

than two feature vectors. Also, there were no any studies which

were combining unique feature extraction techniques with

LSTM and ANN for bug priority prediction.

To cover this gap in the existing literature, we were able to

apply a variety of three feature extraction techniques of TF-

IDF, GloVe, and Word2Vec with an ensemble approach based

on the LSTM deep learning algorithm. Then the result was

compared with the individual results including the ANN

algorithm result.

III. METHODOLOGY

This study automated the priority levels determined by bug

reports using an algorithmic technique. During the scope of this

research, a further four-step process of inquiry has been carried

out. The first and second processes were collecting bug reports

and pre-processing the data. In third step, features were

retrieved from the pre-processed data using various extraction

methods, such as TF-IDF, GloVe, and Word2Vec. As a fourth

step, determine the bug reports related to their priority level

using the LSTM and ANN algorithms by combining the three

results taken from the three feature vector generations.

The research approach is described in detail in the below Figure

1.

Figure 1. Research approach

A. Data Collection & Labeling

Software flaws also referred to as bugs, are found and tracked

during software testing using bug tracking. Tracking issues or

tracking defects can mention as other names for this process.

There are many options for issue-tracking software, including

Jira, Mantis, Redmine, Bugzilla, Backlog, and Bugnet.

Software bug reports are submitted to bug-tracking systems

every day. Through Bugzilla, we collected over 21,000 bug

reports under four open-source applications, including Firefox,

Eclipse, Netbeans, and Open Office. The total bug reports we

collected are shown in following Table 2.

19

Table 2. Total Bug Reports

Project No of bug reports

Mozilla 4165

Eclipse 8478

Netbeans 4305

Open Office 4553

Total 21,501

The source of the bug reports was Bugzilla Bug tracking

system. The bug ID (bugID), description (sd), classification

(cl), product (pd), component (co), platform (rp), operating

system (os), bug status (bs), resolution (rs), priority (pr), and

severity (bsr) are the 11 columns in the CSV formatted data

files that were created from the collected data. As a major

feature, we select description (sd), which establishes the

priority level. The remainder of the columns were removed.

According to the data, description is the main variable which is

affecting the bug priority level. While description act as an

independent variable, priority level considers as a dependent

target variable.

The data in Table 3 below show the 10 selected examples for

the priority values P1, P2, P3, and P4, respectively.

Table 3. Data Examples

Description Priority

1 Scroll Up Down using Ctrl UP DOWN stopped

to work

P1
2 Unable to create a new project

3 Unable to update existing plugins and unable to

install new plugins

P2
4 Can’t display thumbnail images for plugins

added since

5 Copy and paste for an aux file do not work

P3
6 UI freezes in Plugins View

7 Dead Link from Plugins window

P4
8 Error when uninstall IDE Win

9 Allow only certain pages to modify fonts

P5 10 Intermittent session restores many windows

timeout

B. Data Pre-processing

The crucial phase in the machine learning process is data pre-

processing [25]. The bulk of bug reports contains extraneous

and meaningless details. For the classification model to

produce better results, the data must be in the correct format.

Pre-processing will improve the quality of the data set by

eliminating those unnecessary data. It is the process of

transforming unstructured data into a more understandable

format. After handling the missing values, the text in the bug

reports will be cleaned up using different pre-processing

techniques as shown in the Figure 2.

Figure 2. Steps of data pre-processing

Remove special characters, numbers, punctuations –

Remove unnecessary special characters, and numbers,

including punctuation from the data, and working with data that

contains unnecessary special characters, numbers can be

difficult. For this reason, we got rid of some punctuation,

special letters, numbers (0–9), and symbols. (! " ” # $ % & \ ' (

) * + , . / : ; < = > ? @ [\ \] ^ _ ` { | } ~).

Table 4. Examples for Remove special characters, numbers,

punctuations

Description before remove

special characters,

numbers, punctuations

Description after remove

special characters, numbers,

punctuations

PDE quickfix creates invalid

@Since tag

PDE quickfix creates invalid

Since tag

OpenJ9: Git failing on

master, builds blocked

OpenJ Git failing on master

builds blocked

Use setUseHashlookup in

internal
org.eclipse.e4.ui.dialogs.filter

edtree.FilteredTree

Use setUseHashlookup in

internal org eclipse e ui dialogs

filteredtree FilteredTree

Remove duplicates and stop words – Eliminate duplication

and stop words since redundant data will result from duplicate

data. Duplicate values in the data set were therefore eliminated.

Moreover, often used stop words that lack precise definitions

alone include "in," "the," "a," "our," "is," and "that." These

stop-words will be eliminated during pre-processing.

Table 5. Examples for Remove duplicates & Stop words

Description before remove

duplicates & stopwords

Description after remove

duplicates & stopwords

PDE quickfix creates invalid

Since tag

PDE quickfix creates invalid

tag

OpenJ Git failing on master

builds blocked

OpenJ Git failing master

builds block

Use setUseHashlookup in

internal org eclipse e ui dialogs
filteredtree FilteredTree

Use setUseHashlookup

internal org eclipse ui dialogs
filteredtree FilteredTree

Tokenization – Tokenization is the process of breaking down

the text into individual words, phrases, and clauses [26].

Unneeded symbols will be eliminated. To put it simply,

tokenization eliminates all symbols from the text and divides it

into tokens. By doing this, incoming data is divided into useful

chunks that can be embedded in a vector space.

20

Table 6. Examples for Tokenization

Description before

tokenization

Description after

tokenization

PDE quickfix creates invalid

tag

"['PDE', 'quickfix', 'creates',

'invalid', 'tag']"

OpenJ Git failing master

builds block

"['OpenJ', 'Git', 'fail', 'master',

'builds', 'block']"

Use setUseHashlookup
internal org eclipse ui dialogs

filteredtree FilteredTree

"['Use', 'setUseHashlookup',

'internal', 'org', 'eclipse', 'ui',

'dialogs', 'filteredtree',
'FilteredTree']"

Lowercasing – Lowercasing refers to the process of changing

all text and data to lowercase letters. Even though the terms

"Home" and "home" have the same meaning, the vector space

modeling recognizes them as two distinct words if they are not

written in lowercase.

recognition [27]. Three different feature vector approaches,

TF-IDF, GloVe, and Word2Vec were utilized in this inquiry.

1) TF-IDF

Text input will simply be converted into a numerical format

known as a vector form capable of machine learning techniques

by using this feature vector. A statistical assessment called TF-

IDF [28] looks at a word's relevance to each document in a set

of documents. A word's TF-IDF is determined by multiplying

two separate metrics.

Term Frequency (TF): The phrase "term frequency" refers to

how frequently a word appears in a document. This is

calculated by dividing the number of times a word appears in a

document by the total number of words in the document. The

calculation is shown in following (1).
(# 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

Table 7. Examples for Lowercasing
𝑇𝐹 =

(# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)
(1)

Inverse Document Frequency (IDF): The inverse document

frequency measures how frequently a word appears in a group

of documents. This indicates how uncommon a word is over

the full corpus of documents. This value will be close to 0, if

the word is widely used and frequently found in a document,

else it will be 1. The calculation is shown in following (2).
(# 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

𝐼𝐷𝐹 =
(# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

(2)

Stemming – In the English language, a single sentence can take

many different forms. These inconsistencies in a text cause data

in machine learning models to become redundant. Due to this,

it will be impossible to produce the desired results. Thus,

stemmed terms in the data set ought to be eliminated. Words

are being reduced to their stems in this process. As an

illustration, the terms "take," "takes," "taken," and "took" can

all be replaced with the one word "take."

Table 8. Examples for Stemming

Description before

stemming

Description after stemming

"['pde', 'quickfix', 'creates',

'invalid', 'tag']"

"['pde', 'quickfix', 'create',

'invalid', 'tag']"

"['openJ', 'git', 'fail', 'master',

'builds', 'block']"

"['openJ', 'git', 'fail', 'master',

'build', 'block']"

"['use', 'setusehashlookup',

'internal', 'org', 'eclipse', 'ui',

'dialogs', 'filteredtree',
'filteredtree']"

"['use', 'setusehashlookup',

'internal', 'org', 'eclipse', 'ui',

'dialogs', 'filteredtree',
'filteredtree']"

After the data had been appropriately gathered and captured

from the Bugzilla, we apply some data pre-processing

techniques to clean the bug reports and eliminate the

superfluous content. There were no longer any tags, URLs,

links, or numbers. As a result, deleting them aids in shrinking

the feature space.

C. Feature Extraction

After preprocessing, data must be converted into features for

modeling. Raw text input data cannot be directly used to use

machine learning techniques. The acquisition of contextual

characteristics of the text is required in order to convert it into

feature vectors. Symbolic and numeric characters are

represented by features in machine learning and pattern

TF-IDF: These two numbers are multiplied to provide the TF-

IDF score of a word in a document. The word becomes more

significant in that specific document the higher the score. The

calculation is shown in following (3).
𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 (3)

2) GloVe

The GloVe [29],an unsupervised learning method for Word

Representation, is a popular algorithm for generating word

embeddings in machine learning. Word embeddings are dense

vector representations of words that capture semantic and

syntactic relationships between words based on their contexts

in a given corpus of text. The primary goal of GloVe is to create

word embeddings that capture the meaning of words by

leveraging the statistics of word co-occurrence in a large

corpus. It combines elements from two different approaches to

word embeddings: count-based methods like Latent Semantic

Analysis and predictive methods like Word2Vec.

3) Word2Vec

Word2Vec [30] is a popular algorithm in machine learning that

is used for representing words as numerical vectors in a high-

dimensional space. It was introduced by Tomas Mikolov et al.

at Google in 2013 and has since become a fundamental tool for

NLP tasks. The main idea behind Word2Vec is to capture the

semantic and syntactic relationships between words by learning

vector representations based on their contextual usage in a

given corpus of text. The algorithm operates on the assumption

that words appearing in similar contexts tend to have similar

meanings. For example, in the sentence "The cat sat on the

mat," the words "cat" and "mat" are more likely to be similar in

meaning because they both appear in the context of a sentence

about sitting on an object.

D. Classification

Description before

lowercasing Description after lowercasing

"['PDE', 'quickfix', 'creates',

'invalid', 'tag']"

"['pde', 'quickfix', 'creates',

'invalid', 'tag']"

"['OpenJ', 'Git', 'fail', 'master',

'builds', 'block']"

"['openJ', 'git', 'fail', 'master',

'builds', 'block']"

"['Use', 'setUseHashlookup',

'internal', 'org', 'eclipse', 'ui',

'dialogs', 'filteredtree',

'FilteredTree']"

"['use', 'setusehashlookup',

'internal', 'org', 'eclipse', 'ui',

'dialogs', 'filteredtree',

'filteredtree']"

21

Then LSTM deep learning algorithm and ANN algorithms are

used to forecast the priority levels in a bug report. Cleaning and

feature extraction of the data resulted in the separation of the

data into training and testing data, with training data accounting

for 70% and testing data for the remaining 30% by the

experiment. The different approaches generate for priority

prediction by loading it into ANN and LSTM independently.

1) LSTM

LSTM is a type of recurrent neural network, (RNN [31])

architecture that is designed to handle and model long-term

dependencies in sequential data. It overcomes the limitations of

traditional RNNs by introducing memory cells and gating

mechanisms. The key idea behind LSTM is the concept of a

memory cell, which allows the network to remember

information over long sequences. The memory cell is

responsible for storing and updating information, selectively

forgetting or retaining it based on its relevance to the current

context. Overall, LSTM is a powerful RNN variant that enables

the modeling of long-term dependencies and has been widely

adopted in various domains of machine learning and natural

language processing due to its ability to effectively handle

sequential data.

2) ANN

Artificial neural networks, often known as neural networks, are

models that use computer techniques to imitate the behavior of

neuron-based biological systems [32]. ANN is with machine

learning and pattern recognition capabilities. The central

nervous system of animals serves as the model's inspiration.

This network of "neurons" may compute values from input

data. Three layers, including an input layer, a hidden layer, and

an output layer, may be present in a neural network.

LSTM deep learning algorithm and the ANN algorithm were

chosen due to their strengths in handling sequential data,

learning complex relationships [33], and their established

effectiveness in similar machine learning tasks based on the

literature review.

In this study, TF-IDF, GloVe, and Word2Vec feature vectors

were used to create three LSTM prediction model separately.

Then, three distinct models that were in alignment with the

LSTM algorithm were combined to make an ensemble model.

When each model predicts the priority, we selected the majority

by comparing three results generated by three models as below

table 9 shows.

Table 9. Selecting majority value using three LSTM models

including ANN model to select the best one. The process of

ensemble model creation is explained in Figure 3.

Figure 3. Process of making ensemble model

In parallel, ANN model also created using same three feature

vectors and we were identified results were lower than the

LSTM Model results. And TF-IDF is the only method which is

generating highest accuracy among those three feature vector

generations with ANN. So, we decided to use ANN with TF-

IDF for further comparison.

After creation of all five models, considering actual priority

values and predicted priority values under all models including

ANN model, LSTM GloVe, LSTM Word2Vec, LSTM TF-

IDF, and ensemble model we done the validation to find a

better model using selected 5000 total data set.

IV. RESULTS & EVALUATION

The experimental platform used Microsoft Windows 11 on a

PC with processor 8th Gen Intel(R) Core (TM) i3-8145U CPU

@ 2.10 GHz 2.30 GHz, 4.00 GB RAM to training, testing, and

implementing model.

The evaluation is based on three feature vector extraction

methods with LSTM algorithm and ANN algorithm under

collected bug reports via Bugzilla. The experiment is designed

to classify the descriptions of bug reports into five priority

levels using above feature vectors and algorithm. The model is

being developed in Python programming language.

Accuracy, precision, recall, and f-measure were computed for

ANN and LSTM algorithm under three feature vectors using

below (4) – (7) respectively.

Following (4) used to evaluate the accuracy of the model. To

do that, total number of correct predictions should divide by

total number of predictions. Following (5) used for measure the

actually correct proportion of positive identifications. We used

recall and f-measure for the evaluation and calculated using (6)

and (7) respectively.

Then assigning those majority value as the ensemble model

result, we compared it with the individual algorithm results

𝑁𝑜 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
(4)

Description

G
L

O
V

E

T
F

-I
D

F

W
2
V

M
a
jo

ri
ty

E
n

se
m

b
le

R
es

u
lt

Performance loss in composite

WM paint 1 1 1 1 1

Validator incorrectly flags

conditionally declared class as a

PHP error

2

3

3

3

3

Crash when opening a

presentation macOS 4 4 5 4 4

22

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

A. Results of Model Implementation

(5)

(6)

(7)

size as optimum value for our evaluation process. Then we

divide dataset into 77% of training data and 33% of testing data.
Table 11. Evaluation of accuracy according to the different training

data set

First, we implement the three LSTM models under different

feature vectors and ANN model with TF-IDF. In this section

shows the results based on above evaluation measurements on

full dataset of 20,501 bug reports. Based on the performance of

each model, Figure 4 shows the accuracy results for ANN and

LSTM classifier under three feature extraction methods.

According to the results, the accuracy of ANN model is 80%,

LSTM TF-IDF model is 78.10%, LSTM GloVe model is

81.47% and LSTM Word2Vec model is 75%. Based on the

results, LSTM GloVe model shows the highest accuracy

among all four models.

Figure 4. Model Implementation Accuracy of ANN and LSTM under

TF-IDF, GloVe, Word2Vec

Table 9 shows the evaluation result for precision, recall, and f-

measure of ANN model and LSTM model under three different

feature vectors.

Table 10. Precision, recall, f-measure of ANN & LSTM under TF-

IDF, GloVe, Word2Vec

Feature Vector Precision Recall F- measure

LSTM TF-IDF 96% 81% 87%

LSTM GloVe 98% 83% 89%

LSTM Word2Vec 94% 77% 84%

ANN TF-IDF 93% 83% 83%

Furthermore, evaluation was consider using different

percentages (57%, 67%, 77% and 87%) of training data.

Accuracy values for ANN and LSTM under three feature

vectors were as in Table 10. By considering the results of

different training data sizes, we identified 77% of training data

And also, hyperparameters of the ANN and LSTM classifiers

were found, and the obtained optimal value for

hyperparameters is provided in Table 11 as below and

evaluation of accuracy based on those parameters shown in

Figure 5 – Figure 8.

Table 12. ANN - LSTM Classifier Hyperparameters

Classifier Optimum values discovered for the

hyperparameters

LSTM with

TF-IDF

Epochs= 100, batch_size= 52, optimizer = ‘adam’

LSTM with

GloVe

Epochs= 200, batch_size= 33, optimizer = ‘adam’

LSTM with

W2V

Epochs= 200, batch_size= 43, optimizer = ‘adam’

ANN with

TF-IDF

Epochs=250, batch_size=43, optimizer = ‘adam’

B. Results of Data Validation

Priority values were predicted using LSTM three models which

we implemented using TF-IDF, GloVe and Word2Vec and

ANN with TF-IDF under validation dataset of 5000 bug

reports. Then we check the algorithm outcomes by combining

different feature extraction techniques results, we found

majority priority value for each bug description. By

considering that majority value we got the ensemble model

priority value as shown in the Table 12 examples.

Table 13. Generating majority value for ensemble model

Bug

Report

GloVe

Priority

TF IDF

Priority

Word2Vec

Priority

Majority

Value

(LSTM

Ensemble

model)

1 P1 P1 P1 P1

2 P2 P1 P1 P1

3 P3 P3 P3 P3

4 P4 P3 P3 P3

5 P5 P5 P4 P5

Classifier
Training data size

57% 67% 77% 87%

LSTM TF- IDF

Accuracy (%)

78% 78% 78% 78%

LSTM GloVe

Accuracy (%)

78%
77%

81% 78%

LSTM W2V

Accuracy (%)

75% 74% 75% 74%

ANN TF-IDF

Accuracy (%)

72% 76% 80% 78%

23

Then considering actual priority values and predicted priority

values under five models including ANN model, LSTM GloVe,

.

LSTM Word2Vec, LSTM TF-IDF, and ensemble model we

done the evaluations to find a better model

(a) (b)

Figure 5: (a) Epochs accuracy and (b) Batch sizes accuracy of LSTM with TF-IDF

a) (b)
Figure 6: (a) Epochs accuracy (b) and Batch sizes accuracy of LSTM with GloVe

(a) (b)

Figure 7: (a) Epochs accuracy (b) and Batch sizes accuracy of LSTM with Word2Vec

(a) (b)

Figure 8: (a) Epochs accuracy (b) and Batch sizes accuracy of ANN with TF-IDF

24

When considering actual priority and predicted priority values

ensemble model achieving more accuracy than other three

individual models under ANN and LSTM classifier. Following

Table 13 shows the summary of predicted values and its

accuracy. Here total predictions are 5000.

Table 14. Summary of prediction and its accuracy with the ensemble

model using validation data

Classifier True

Predictions

Wrong

Predictions

Accuracy

ANN TF-IDF Model 4014 986 80%

LSTM GloVe Model 4479 521 89%

LSTM TF-IDF Model 4447 553 88%

LSTM W2V Model 4242 758 84%

LSTM Ensemble Model 4600 400 92%

Furthermore, following Recall, Precision, and F- measure were

calculated under five prediction models based on validation

data shown as Table 14.

Table 15. Precision, recall, f-measure of ANN, LSTM & Ensemble

models using validation data

Models Precision Recall F- measure

ANN TF-IDF Model 79% 81% 88%

LSTM TF-IDF Model 89% 95% 91%

LSTM GloVe Model 89% 96% 93%

LSTM Word2Vec Model 89% 88% 78%

LSTM Ensemble Model 94% 98% 95%

When comparing all the five models, ensemble model achieved

the highest accuracy as well as best performance among all

other evaluation metrics. It means ensemble model can gain

more reliable and accurate predictions than other four models.

C. Results of statistical test (Student t-test)

It’s important to use statistical hypothesis test to select the final

model. Statistical significance tests are designed to address and

compare the performance of machine learning models. In this

study we used student t-test for find a better model. In the case

of comparing the performance of models, we have to select two

models to perform the paired Student’s t-test. Among the above

five models, based on the highest accuracy, LSTM GloVe

model and Ensemble model were compared. In this student t-

test which can compare the means of two independent samples

to see if they are significantly different from each other. We

conducted a two-sample t-tests to compare the means of these

two sets of accuracies as below table.

Table 16. Results of t-test

The t-statistic is significantly high at 6.5027 while p-value is

extremely low at 0.0001 Since the p-value is much less than

0.05, we reject the null hypothesis that there is no difference

between the accuracies of two models. This indicates that the

observed difference in accuracies between the LSTM GloVe

model and the Ensemble model is statistically significant.

Therefore, based on this statistical evidence, we concluded that

the proposed models perform statistically significant. Based on

the accuracies, the ensemble model selected as the better model

among these two algorithms.

IV. CONCLUSION

The process of manually assigning a bug priority value to a bug

report takes time. There is a chance that a developer will

reassign a wrong value, and this can affect several important

software development processes. The main objective of this

research is to incorporate three feature extraction approaches to

create a model for automatically predicting the priority of bugs

using the ANN and LSTM deep learning algorithm as a

solution to the aforementioned problem.

We collect approximately 20,500 bug reports from Bugzilla;

bug tracking system. Following preprocessing, created three

models using the LSTM classifier and three unique feature

vectors including GloVe, TF- IDF, and Word2Vec. After

comparing the three LSTM models' outputs, the majority value

was determined for creating an ensemble model. In parallelly,

ANN model was built under TF-IDF feature vector. After

validating those five models on 5000 bug reports and

comparing outcomes, it was found that the ensemble model

generated the most accurate results than other four models. In

the prediction procedure, the ANN model’s accuracy was

80.28%, LSTM GloVe model's accuracy was 89.58%, the

LSTM TF-IDF model's accuracy was 88.94%, the LSTM W2V

model's accuracy was 84.84%, and the accuracy of the

ensemble model was 92%. For the purpose of evaluating the

models, accuracy, recall, precision, and f-measure were used.

Ensemble model achieving the highest values in all evaluation

matrixes and shows it was the best method to predict the bug

priority value in bug fixing during the software development

process. As well as based on this statistical evidence, the

models are statistically significant with higher t-statistic value

6.5027 and p-value 0,0001.

These research findings will assist programmers, software

developers and project managers in fixing bugs in software

systems more quickly than before. As well as new researchers

can gain knowledge regarding automate the bug priority

prediction. In the future studies, we intend to gather data from

sources other than Bugzilla, such as JIRA or a GitHub

repository. Additionally, we try to apply other deep learning

algorithms to improve the accuracy. And also, we are planning

to improve the statistical test using all the proposed models in

the future.

REFERENCES

[1] K. Moran, "Enhancing android application bug reporting,"

10th Joint Meeting Foundation, no. Aug, 2015, pp. 1045 -

1047, 2015.

Measurement Value

t-statistic 6.5027

p-value 0.0001

25

[2] J. Xuan, H. Jiang, Z. Ren and W. Zou, "Developer

Prioritization in Bug Repositories," in 34th International

Conference on Software Engineering (ICSE), 2012.

[3] "Debian-wiki portal," 08 04 2022. [Online]. Available:

https://wiki.debian.org/BTS. [Accessed 25 June 2023].

[4] "Jira Issue Tracker," Atlassian, [Online]. Available:

https://www.atlassian.com/software/jira/. [Accessed January

2023].

[5] "Bugzilla Issue Tracker," Mozilla, [Online]. Available:

https://www.bugzilla.org/. [Accessed January 2023].

[6] X. Xia, D. Lo, X. Wang and B. Zhou, "Accurate developer

recommendation for bug resolution," in 20th Working

Conference Reversen Eng. (WCRE), Oct., 2013.

[7] H. Bani-Salameh, M. Sallam and B. Al shboul, "A Deep-

Learning-Based Bug Priority Prediction Using RNN-LSTM

Neural Networks," e-Information Software Engineering

Journal, vol. 15, no. 1, pp. 29-45, 2021.

[8] "Bugzilla - Reporting a Bug," www.Bugzilla.org, June 2023.

[Online]. Available:

https://www.bugzilla.org/contributing/reporting_bugs.html.

[Accessed 14 June 2023].

[9] R. Harris, "Singlemindconsulting," 14 August 2020. [Online].

Available:

https://www.singlemindconsulting.com/blog/prioritize-bug-

fixes-vs-product-features/. [Accessed 25 June 2023].

[10] H. L. a. I. I. Q. Umer, "CNN-based automatic prioritization of

bug reports," IEEE transactions on reliability, Vols. 69, no. 4,

pp. 1341-1354, 2020.

[11] "Browserstack - Bug Severity Vs Priority,"

www.browserstack.com, 2023. [Online]. Available:

https://www.browserstack.com/guide/bug-severity-vs-

priority\. [Accessed 14 June 2023].

[12] R. Rathnayake, B. Kumara and E. Ekanayake, "CNN-Based

Priority Prediction of Bug Reports," in International

Conference on Decision Aid Science and Application (DASA),

2021.

[13] Q. Umer, H. Liu and Y. Sultan, "Emotion Based Automated

Priority Prediction for Bug Reports," IEEE Access, vol. 6, no.

July 2, 2018, pp. 35743-35752, 2018.

[14] Q. Umer, H. Liu and . I. Illahi, "CNN-based automatic

prioritization of bug reports," IEEE trans. reliab, vol. no. 4, no.

69, pp. 1341-1354, 2020.

[15] W. Y. Ramay, Q. Umer, C. Zhu, X. U. C. Yin and . I. Inam,

"Deep Neural Network-Based Severity Prediction of Bug

Reports," IEEE Access, vol. 7, no. 2019, pp. 46846 - 46857,

2019.

[16] P. Latha and M. Marlakunta, "Predicting the Severity of Bug

Reports using Classification Algorithms," researchgate.net,

Bangalore, India, 2021.

[17] J. KIM and G. YANG, "Bug Severity Prediction

Algorithm Using Topic-Based Feature Selection and

CNN- LSTM Algorithms," IEEE Access, vol. 10, no. 14,

pp. 94643-94651,

2022.

[18] A. B. Farid, E. M. Fathy, A. S. Eldin and L. A. Abd-

Elmegid, "Software defect prediction using hybrid model

(CBIL) of convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM)," PeerJ

Computer Science, p. 19, 2021.

[19] M. W. Thant and N. T. Aung, "Software Defect Prediction

using Hybrid Approach," in University of Information

Technology, Yangon, Myanmar.

[20] T. Chakraborty and A. K. Chakraborty, "Hellinger Net: A

Hybrid Imbalance Learning Model to Improve Software

Defect Prediction," Cornell University Library, 2020

September 12.

[21] G. Y. J. KIM, "Bug Severity Prediction Algorithm Using Topic-

Based Feature Selection and CNN- LSTM Algorithms," IEEE

Access, vol. 19, no. 14 September 2022, pp. 94643 - 94651,

September 2022.

[22] R. R. Panda and N. K. Nagwani, "Software bug severity and

priority prediction using SMOTE and Intuitionistic fuzzy

similarity measure," Applied Soft Computing, vol. 150, 2024.

[23] A. Yadav and S. S. Rathore, "A Hierachical Attention Networks

based Model for Bug Report Prioritization," in 17th

Innovations in Software Engineering Conference (ISEC-2024),

Bangalore, India, 2024.

[24] Z. Li, G. Cai, Q. Yu, P. Liang, R. Mo and H. Liu, "Bug priority

change: An empirical study on Apache projects," Journal of

Systems and Software, vol. 212, 2024.

[25] "Java Point - Data Preprocessing in Machine Learning,"

[Online]. Available: https://www.javatpoint.com/data-

preprocessing-machine-learning. [Accessed 25 June 203].

[26] "Gartner," 2023. [Online]. Available:

https://www.gartner.com/en/information-

technology/glossary/tokenization#:~:text=Tokenization%20re

fers%20to%20a%20process,requires%20strong%20protection

s%20around%20it.. [Accessed May 2023].

[27] "ScienceDirect - Pattern Recognition," [Online]. Available:

https://www.sciencedirect.com/journal/pattern-recognition.

[Accessed 25 June 2023].

[28] A. Simha, "Capital One - Understanding TF-IDF for machine

learning," 7 October 2021. [Online]. Available:

https://www.capitalone.com/tech/machine-

learning/understanding-tf-idf/. [Accessed 25 June 2023].

[29] "Stanford University," [Online]. Available:

https://nlp.stanford.edu/projects/glove/. [Accessed 25 June

2023].

[30] shrisikotaiah, "Geeksforgeek," [Online]. Available:

https://www.geeksforgeeks.org/word-embeddings-in-

nlp/#:~:text=Word%20Embedding%20or%20Word%20Vecto

r,can%20represent%2050%20unique%20features..

[31] "IBM - RNN," [Online]. Available:

https://www.ibm.com/topics/recurrent-neural-networks. [Accessed

25 June 2023].

[32] "Scholar- Google," [Online]. Available:

https://scholar.google.com/scholar?q=neuron-

based+biological+systems&hl=en&as_sdt=0&as_vis=1&oi=s

cholart. [Accessed 23 June 2023].

26

[33] P. Srivatsavya, "LSTM - Implementation, Advantages and

Disadvantages," 5 October 2023. [Online]. Available:

https://medium.com/@prudhviraju.srivatsavaya/lstm-

implementation-advantages-and-diadvantages-

914a96fa0acb#:~:text=Handling%20Long%20Sequences%3

A%20LSTMs%20are,NLP)%20and%20time%20series%20an

alysis.. [Accessed 30 June 2024].

[34] M. S. a. B. A. s. H. Bani-Salameh, e-Information Software

Engineering, vol. 15, p. no. 1, 2021.

[35] J. Kim and G. Yang, "Bug Severity Prediction Algorithm Using

Topic-Based Feature Selection And CNN-LSTM Algorithm,"

IEEE Access, vol. 10, pp. 94643-94651, 2022.

[36] "java Point - Data Preprocessing in Machine Learning,"

[Online]. Available: https://www.javatpoint.com/data-

preprocessing-machine-learning. [Accessed 25 June 2023].

Acknowledgment: There are no any special parties to

acknowledge.

Financial interest: The authors declare they have no relevant

financial or non-financial interests to disclose.

Conflict of interest: The authors have no conflicts of interest

to declare.

AUTHOR BIOGRAPHIES

D. N. A. Dissanayake was born in June

1998. She graduated from Sabaragamuwa

University of Sri Lanka, with a second upper

class bachelor’s degree in Information and

Communication Technology. Her recent

research interests include machine learning,

artificial intelligence, the development of application based on

data mining.

R.A.H.M. Rupasingha received her BSc in

2013 from Sabaragamuwa University in Sri

Lanka. She obtained her MSc and PhD in

2016 and 2019, respectively, from the School

of Computer Science and Engineering, the

University of Aizu, Japan. Currently, she is a

senior lecturer in Sabaragamuwa University in Sri Lanka. Her

research interests include machine learning, ontology learning,

data mining and recommendation

B. T. G. S. Kumara received the bachelor’s

degree in 2006 from Sabaragamuwa

University of Sri Lanka. He received the

master’s degree in 2010 from University of

Peradeniya, Sri Lanka and he received the

PhD from School of Computer Science and Engineering,

University of Aizu, Japan in 2015. Currently, he is a professor

in Sabaragamuwa University in Sri Lanka. His research

interests include semantic web, data mining, machine learning,

web service discovery and composition.

