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ABSTRACT The process of manually assign a priority value to a bug report takes time. There is a high chance that a 

developer may allocate the wrong value, and this can affect several important software development processes. To address 

this problem, the objective of this research incorporates three unique feature extraction approaches to create a model for 

automatically predicting the priority of bugs using the Long Short-Term Memory (LSTM) deep learning algorithm and 

Artificial Neural Network (ANN) algorithm. First, we collected approximately 20,500 bug reports from the Bugzilla; bug 

tracking system. Followed preprocessing, created models using two classifiers and feature vectors including Global Vectors 

for Word Representation (GloVe), Term Frequency-Inverse Document Frequency (TF-IDF), and Word2Vec used 

individually. The final classification results were determined by comparing the all results of the different models, which 

were integrated into an ensemble model. For evaluating the models, accuracy, recall, precision, and f-measure were used. 

The ensemble model produced the highest accuracy of 92% than other models as ANN model’s accuracy was 80.28%, 

LSTM GloVe model's accuracy was 89.58%, LSTM TF-IDF model's accuracy was 88.94%, LSTM W2V model's accuracy 

was 84.84%. And also, higher recall, precision, and f-measure results were found in the ensemble model. Using the 

proposed model by LSTM-based ensemble approach we could automatically find the bug priority level of bug reports 

efficiently and effectively. In the future studies, intend to gather data from sources other than Bugzilla, such as JIRA or a 

GitHub repository. Additionally, try to apply other deep algorithms to improve the accuracy. 

INDEX TERMS Bug Priority Prediction, Ensemble Model, LSTM 

 

I. INTRODUCTION 

A crucial step in the software development process is software 

maintenance which stands for changing, tweaking, and 

updating software and its features to produce a better version 

of it [1]. Developers and other responsible parties maintain 

software for a variety of purposes, including enhancing general 

software performance and fixing bugs after the software is 

released. 

 

A bug repository is one of the most crucial software 

repositories and the most significant database in the software 

development process [2]. For updating and keeping 

information about problems that emerge or suggestions for 

improving the project, many software projects establish and 

maintain bug repositories. The people generate, store, update, 

and research every software defect in the software repositories. 

As a result, developers have to continuously update and 

produce different bug reports to aid in the creation and 

maintenance of software. 

 

The most crucial task of the software that is being improved is 

bug fixing. To improve software systems, developers and 

project managers collect bug reports and look at Bug Tracking 

Systems (BTS) [3], sometimes referred to as issue tracking 

systems, such as JIRA [4] and Bugzilla [5], which assist 

developers in handling bug triaging and bug reporting [6]. 

 

The performance and quality of software systems may decline 

as a result of the numerous defects that exist in them. It is 

impossible to produce error-free software and many projects 

will be delivered with flaws because bugs are a regular 

occurrence [7]. Software creators enable users to submit 

defects in the BTS to enhance the upcoming version of the 

program. The following pre-defined fields are included in a bug 

report: the bug ID, content ID, title, error description, 

owner/author, status, priority, version, and severity [8]. The 

urgency of a defect's remedy is determined by bug priority. 

 

Assigning a bug priority or bug prioritization is a very 

important task due to several reasons [9]. It facilitates a deeper 

comprehension of the bug and identifies potential solutions. 

After finding the bug, we can improve the program architecture 

to prevent it from becoming a greater issue. The bug that is 

creating the most issues is determined to have the highest 

priority. The priority of the bug determines the sequence in 

which the developer or project manager should fix it. With P1 

denoting the highest priority and P5 denoting the lowest 

priority, a bug report's priority is assigned on a scale of P1 to 

P5. Bug prioritization is a manual process that requires a lot of 
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time because there are so many bug reports. When a defect is 

submitted, a developer looks into it and manually assigns 

priority to the pertinent bugs. The term "bug triaging" refers to 

this time-consuming manual process carried out by humans 

[10]. As a result, the likelihood of improper bug prioritizing is 

considerable. There may be a high possibility of incorrect bug 

prioritization as well. Automating the process of prioritizing 

bug reports is crucial for avoiding this serious problem. In this 

study, we suggested to build a model as a solution to the issue 

of identifying bugs with the highest priority. 

 

This study's primary goal is to develop a model for 

automatically predicting the prioritization of bugs using ANN 

algorithm and LSTM deep learning algorithm by combining 

three feature extraction methods as a solution for above 

mentioned problem. 

 

A bug priority prediction model can be useful in several ways. 

The machine learning and deep learning classifiers used for 

classifying the text of the bug reports when it comes to 

prioritizing bugs. After collecting data, they should pre- 

process. Then feature extraction is carried out utilizing three 

various techniques including TF-IDF, Word2Vec, GloVe with 

the LSTM algorithm and TF-IDF with ANN as algorithm. 

Three LSTM results were combined into ensemble model to 

take the final classification results with the comparison of 

individual model results of ANN and LSTM Models. 

Accuracy, recall, precision, and f-measure were used for 

measure the evaluation of the models. 

 

The following is a summary of expected contributions of this 

paper. 

 

I. Ensemble approach based on LSTM algorithm is 

proposed to automatic priority prediction of bug reports 

into five priority levels namely P1, P2, P3, P4 and P5. 

II. The suggested strategy is based on analysing bug 

reports. The proposed methodology for bug priority 

prediction provides correct automatic priority levels for 

analysing and improving software systems on time. 

III. LSTM three individual models, LSTM ensemble 

approach and ANN model are compared with each other 

to evaluate the performance of the proposed approach. 

 

This paper is organized as follows. In Section 2, review existing 

literature. Section 3 explains the proposed methodologies. 

Research finding and evaluation of the results shown in Section 

4. Finally, in Section 5 concludes the paper and discusses the 

recommendation. 

 
II. LITERATURE REVIEW 

A. Related Work 

To identify the uniqueness of our research, it is important to 

review the existing literature in knowledge. The majority of 

current studies have used deep neural techniques, and relied on 

machine learning algorithms to forecast the priority levels in a 

bug report. We perform a critical analysis of the preceding 

works to show the originality of our study. 

 

There were basically two main paths in early studies under the 

topic of bug report such as priority prediction and severity 

prediction [11]. Priority prediction of bug reports was recently 

carried out [12], using a CNN-based technique. Utilizing 

Natural Language Processing (NLP) techniques, done 

preprocessing on data bug descriptions, and created a 

classification model utilizing TCN, CNN, and SVM 

algorithms. Accuracy, Recall, Precision, and F1-score were 

used to evaluate how well the generated models performed. 

This study used a deep neural network-based algorithm, NLP 

techniques, and feature extractions to anticipate the priority 

levels of bug reports. And research findings state that CNN is 

best for priority prediction according to their study. 

 

In order to eliminate manual bug prioritizing in [10], a software 

engineering domain repository was utilized to train and 

calculate the emotion value using emotion analysis. Based on 

input data, the CNN classifier makes a priority suggestion. The 

priority suggestions for the reports gathered from the Bugzilla 

and Eclipse projects were made using the CNN prioritization 

method. On average, proposed approach improves the F1 value 

by more than 6%. As well, some researchers Qasim Umer et al. 

[13], propose an automated approach for bug prediction of each 

issue report obtained using Eclipse data from the Bugzilla 

database. This method is based on emotion words. They 

coupled NLP techniques with machine learning algorithms like 

SVM, Naive Bayes classifier (NB), and Linear Regression 

(LR) to overcome the issue. As we select the LSTM approach 

for our study, Hani Bani Salameh et al. [14] constructed a deep 

learning RNN- LSTM network with five layers and compared 

the results with SVM and KNN for issue prediction based on 

more than 2000 JIRA bug reports. Results indicate that for 

performance-based accuracy, AUC, and f-measure, LSTM 

scored best. As in values, accuracy was 0.908, AUC was 0.95, 

and F measure was 0.892. 

 

When it comes to severity prediction, the aim of previous 

studies is to investigate automated severity prediction because 

manual prioritization is time-consuming and tedious. The study 

[15], used NLP as a preprocessing strategy after extracting 

information from open-source project data and is based on the 

textual description that is under a deep neural network. Deep 

learning techniques such as CNN, LSTM, RF, and MNB were 

used for training and prediction, with CNN having the highest 

accuracy of all techniques. On average, it improves the F- score 

by 7.90% according to the results of the study. Additionally, 

severity prediction on data gathered through Bugzilla in [16], 

was carried out using the Bagging ensemble approach and the 

C4.5 classifier. The outcomes of comparing the two approaches 

indicate that the C4.5 classifier performs better at predicting 

severity of issue reports for cross component context and 

closed source software. According to the results J48 classifier 
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gain 79.82% of accuracy while bagging classification 

algorithm become highest accuracy among them while 

representing 81.27% accuracy. 

The approach [17], organizes Mozilla and Eclipse bug reports 

into severity categories based on topics, then extracts features 

from each topic. Then, by assimilating traits from the LSTM 

and CNN algorithms, forecast the severity. In order to estimate 

the severity, they feed the CNN with extracted features as its 

input, and it uses its output to feed the LSTM. The performance 

of the suggested model was assessed by comparing it to the 

baseline in order to make better predictions. 

 

Instead of single priority and severity prediction, there were 

some areas of researches under hybrid approach in both priority 

prediction and severity prediction. According to [18], they 

build a hybrid model for predict the defective areas of source 

code named CBIL. First using source code, they extracted the 

Abstract Syntax Tree (AST) tokens as vectors. Then CNN 

extracted the semantics of AST tokens. After that Bi- LSTM 

track the key vectors and reject other features to improve the 

accuracy of the model. Used dataset were seven open-source 

Java projects. According to their results, RNN accomplished 

the top performance. Not only that, but also in [19], they 

proposed a hybrid model for software defect prediction which 

combined SVM and RBF with MRMR feature selection. 

According to their results, MRMR gives better performance 

compared to SVM. According to other researchers Tanujit and 

Ashis proposed a novel hybrid methodology in their study [20], 

for improvement of defect prediction for software. In their 

study, they prove the theoretical consistency of their proposed 

model under more than ten NASA SDP datasets while showing 

the superiority of their proposed method. 

 

As well as priority prediction there were some researchers done 

severity prediction under hybrid approach such as [21]. In their 

study thy proposed an approach for severity prediction based 

on the feature selection algorithm of the severity of each topic 

of data from Eclipse and Mozilla open-source projects. In the 

process they conducted, first classify issue reports by topic- 

based severity and extracted features from it. Then severity was 

predicted by learning characteristics from the LSTM and CNN 

algorithms. The comparison of summary of reviewed papers is 

shown in Table 1. 

 

Table 1. Summary of existing studies 

 

Ref. 

No 

 

Data 

 

Methodology 

 

Objective/s 

 

Limitations 

 

Overcome limitations 

[7] JIRA LSTM, 

KNN 

 SVM, Provides a framework for 

automate predict priority 

2000 of small dataset Use more than 20500 of 

data 

[14] Eclipse  project 

& Bugzilla 

CNN To end manual prioritization of 

bug reports 

Limited only one feature 

extraction 
 

Apply three feature 

extraction methods [12] 4 open-source 

projects 

CNN Predict the bug report's priority 

automatically 

Limited only one feature 

extraction 

[13] Bugzilla Emotional 

Analysis, SVM 

By avoiding manual 

Prioritization, predict priority that 

help developers to focus bugs 

resolution 

Only consider emotional 

analysis 
Considering bug 

prioritization using deep 

learning algorithms 

[15] Bugzilla CNN, LSTM, 

RF, MNB 

Automate prioritizing the severity Only consider severity 

prediction 

Based on bug priority 

prediction of bug reports 

[16] Bugzilla J48 algorithm, 

Bagging 

algorithm 

Find a new technique to avoid 

assigning incorrect severity using 

bagging ensemble method 

Small dataset 

Only consider severity 

prediction 

Increase data set into 

20,500 

& 

Focus on bug priority 

prediction 

[17] Eclipse and 

Mozilla projects 

CNN, LSTM Use topic-based feature selection 

and CNN-LSTM to predict 

severity 

Only consider severity 

prediction 
Based on bug priority 

prediction of bug reports 

[18] open-source 

Java projects 

CNN 

LSTM 

& Bi- Extract the semantics of source 

code for software defect prediction 

Limited only one feature 

extraction  

Apply three feature 

extraction methods 
[19] NASA Metrics 

Data Program 

SVM & RBF Build a model for effective to deal 

with the imbalance datasets in 

software defect prediction 

Limited only one feature 

extraction 

[20] NASA SDP 

dataset 

- Proves the theoretical consistency 

of Hellinger net 

Provide 

base 

only theoretical Use algorithms to evaluate 

each algorithm 

performance, use statistical 

measurements to evaluate 

models’ effectiveness 
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[22] Eclipse, Mozilla, 

Apache, and 

NetBeans 

datasets 

SMOTE & 

IFSM 

Predict the severity and priority of 

software bugs using the IFSM 

Small dataset 
Increase data set into 

20,500 

[23] Mozilla, Eclipse, 

NetBeans, GCC 

CNN, SVM, 

Random Forests 

& Logistic 

Regression, 

HAN 

Build a Hierarchical Attention 

Network (HAN) model for 

prioritizing software bug reports 

Use GloVe word 

embeddings only  

Apply three feature 

extraction methods 

[24] JIRA deployed 

by Apache 

Empirical study Empirical study to explore the 

phenomenon of  bug  priority 

changes 

Conduct only empirical 

study 
Conduct a full approach 

using algorithms 

 

B. Research Gap 

The majority of existing researchers built a model for bug 

prioritization using just one feature vector. Some research used 

two feature extraction methods for result comparison and found 

a better one. There were no studies conduct combining more 

than two feature vectors. Also, there were no any studies which 

were combining unique feature extraction techniques with 

LSTM and ANN for bug priority prediction. 

 

To cover this gap in the existing literature, we were able to 

apply a variety of three feature extraction techniques of TF- 

IDF, GloVe, and Word2Vec with an ensemble approach based 

on the LSTM deep learning algorithm. Then the result was 

compared with the individual results including the ANN 

algorithm result. 

III. METHODOLOGY 

This study automated the priority levels determined by bug 

reports using an algorithmic technique. During the scope of this 

research, a further four-step process of inquiry has been carried 

out. The first and second processes were collecting bug reports 

and pre-processing the data. In third step, features were 

retrieved from the pre-processed data using various extraction 

methods, such as TF-IDF, GloVe, and Word2Vec. As a fourth 

step, determine the bug reports related to their priority level 

using the LSTM and ANN algorithms by combining the three 

results taken from the three feature vector generations. 

 

The research approach is described in detail in the below Figure 

1. 

 

 

Figure 1. Research approach 

 

 

A. Data Collection & Labeling 

 

Software flaws also referred to as bugs, are found and tracked 

during software testing using bug tracking. Tracking issues or 

tracking defects can mention as other names for this process. 

There are many options for issue-tracking software, including 

Jira, Mantis, Redmine, Bugzilla, Backlog, and Bugnet. 

Software bug reports are submitted to bug-tracking systems 

every day. Through Bugzilla, we collected over 21,000 bug 

reports under four open-source applications, including Firefox, 

Eclipse, Netbeans, and Open Office. The total bug reports we 

collected are shown in following Table 2.
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Table 2. Total Bug Reports 

 
Project No of bug reports 

Mozilla 4165 

Eclipse 8478 

Netbeans 4305 

Open Office 4553 

Total 21,501 

 

The source of the bug reports was Bugzilla Bug tracking 

system. The bug ID (bugID), description (sd), classification 

(cl), product (pd), component (co), platform (rp), operating 

system (os), bug status (bs), resolution (rs), priority (pr), and 

severity (bsr) are the 11 columns in the CSV formatted data 

files that were created from the collected data. As a major 

feature, we select description (sd), which establishes the 

priority level. The remainder of the columns were removed. 

According to the data, description is the main variable which is 

affecting the bug priority level. While description act as an 

independent variable, priority level considers as a dependent 

target variable. 

 

The data in Table 3 below show the 10 selected examples for 

the priority values P1, P2, P3, and P4, respectively. 

 
Table 3. Data Examples 

Description Priority 

1 Scroll Up Down using Ctrl UP DOWN stopped 

to work 
 

P1 
2 Unable to create a new project 

3 Unable to update existing plugins and unable to 

install new plugins 
 

P2 
4 Can’t display thumbnail images for plugins 

added since 

5 Copy and paste for an aux file do not work  

P3 
6 UI freezes in Plugins View 

7 Dead Link from Plugins window  

P4 
8 Error when uninstall IDE Win 

9 Allow only certain pages to modify fonts  

P5 10 Intermittent session restores many windows 

timeout 

 

B. Data Pre-processing 

The crucial phase in the machine learning process is data pre- 

processing [25]. The bulk of bug reports contains extraneous 

and meaningless details. For the classification model to 

produce better results, the data must be in the correct format. 

Pre-processing will improve the quality of the data set by 

eliminating those unnecessary data. It is the process of 

transforming unstructured data into a more understandable 

format. After handling the missing values, the text in the bug 

reports will be cleaned up using different pre-processing 

techniques as shown in the Figure 2. 
 

Figure 2. Steps of data pre-processing 

 

Remove special characters, numbers, punctuations – 

Remove unnecessary special characters, and numbers, 

including punctuation from the data, and working with data that 

contains unnecessary special characters, numbers can be 

difficult. For this reason, we got rid of some punctuation, 

special letters, numbers (0–9), and symbols. (! " ” # $ % & \ ' ( 

) * + , . / : ; < = > ? @ [ \ \ ] ^ _ ` { | } ~ ). 

 
Table 4. Examples for Remove special characters, numbers, 

punctuations 

Description before remove 

special characters, 

numbers, punctuations 

Description after remove 

special characters, numbers, 

punctuations 

PDE quickfix creates invalid 

@Since tag 

PDE quickfix creates invalid 

Since tag 

OpenJ9: Git failing on 

master, builds blocked 

OpenJ Git failing on master 

builds blocked 

Use setUseHashlookup in 

internal 
org.eclipse.e4.ui.dialogs.filter 

edtree.FilteredTree 

Use setUseHashlookup in 

internal org eclipse e ui dialogs 

filteredtree FilteredTree 

 

Remove duplicates and stop words – Eliminate duplication 

and stop words since redundant data will result from duplicate 

data. Duplicate values in the data set were therefore eliminated. 

Moreover, often used stop words that lack precise definitions 

alone include "in," "the," "a," "our," "is," and "that." These 

stop-words will be eliminated during pre-processing. 

 
Table 5. Examples for Remove duplicates & Stop words 

Description before remove 

duplicates & stopwords 

Description after remove 

duplicates & stopwords 

PDE quickfix creates invalid 

Since tag 

PDE quickfix creates invalid 

tag 

OpenJ Git failing on master 

builds blocked 

OpenJ Git failing master 

builds block 

Use setUseHashlookup in 

internal org eclipse e ui dialogs 
filteredtree FilteredTree 

Use setUseHashlookup 

internal org eclipse ui dialogs 
filteredtree FilteredTree 

 

Tokenization – Tokenization is the process of breaking down 

the text into individual words, phrases, and clauses [26]. 

Unneeded symbols will be eliminated. To put it simply, 

tokenization eliminates all symbols from the text and divides it 

into tokens. By doing this, incoming data is divided into useful 

chunks that can be embedded in a vector space. 
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Table 6. Examples for Tokenization 

Description before 

tokenization 

Description after 

tokenization 

PDE quickfix creates invalid 

tag 

"['PDE', 'quickfix', 'creates', 

'invalid', 'tag']" 

OpenJ Git failing master 

builds block 

"['OpenJ', 'Git', 'fail', 'master', 

'builds', 'block']" 

Use setUseHashlookup 
internal org eclipse ui dialogs 

filteredtree FilteredTree 

"['Use', 'setUseHashlookup', 

'internal', 'org', 'eclipse', 'ui', 

'dialogs', 'filteredtree', 
'FilteredTree']" 

 

Lowercasing – Lowercasing refers to the process of changing 

all text and data to lowercase letters. Even though the terms 

"Home" and "home" have the same meaning, the vector space 

modeling recognizes them as two distinct words if they are not 

written in lowercase. 

recognition [27]. Three different feature vector approaches, 

TF-IDF, GloVe, and Word2Vec were utilized in this inquiry. 

 

1) TF-IDF 

Text input will simply be converted into a numerical format 

known as a vector form capable of machine learning techniques 

by using this feature vector. A statistical assessment called TF- 

IDF [28] looks at a word's relevance to each document in a set 

of documents. A word's TF-IDF is determined by multiplying 

two separate metrics. 

 

Term Frequency (TF): The phrase "term frequency" refers to 

how frequently a word appears in a document. This is 

calculated by dividing the number of times a word appears in a 

document by the total number of words in the document. The 

calculation is shown in following (1). 
(# 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) 

Table 7. Examples for Lowercasing 
𝑇𝐹 = 

(# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) 
(1)

 

Inverse Document Frequency (IDF): The inverse document 

frequency measures how frequently a word appears in a group 

of documents. This indicates how uncommon a word is over 

the full corpus of documents. This value will be close to 0, if 

the word is widely used and frequently found in a document, 

else it will be 1. The calculation is shown in following (2). 
(# 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) 

𝐼𝐷𝐹 = 
(# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) 

(2) 

 

 
Stemming – In the English language, a single sentence can take 

many different forms. These inconsistencies in a text cause data 

in machine learning models to become redundant. Due to this, 

it will be impossible to produce the desired results. Thus, 

stemmed terms in the data set ought to be eliminated. Words 

are being reduced to their stems in this process. As an 

illustration, the terms "take," "takes," "taken," and "took" can 

all be replaced with the one word "take." 

 
Table 8. Examples for Stemming 

Description before 

stemming 

 
Description after stemming 

"['pde', 'quickfix', 'creates', 

'invalid', 'tag']" 

"['pde', 'quickfix', 'create', 

'invalid', 'tag']" 

"['openJ', 'git', 'fail', 'master', 

'builds', 'block']" 

"['openJ', 'git', 'fail', 'master', 

'build', 'block']" 

"['use', 'setusehashlookup', 

'internal', 'org', 'eclipse', 'ui', 

'dialogs', 'filteredtree', 
'filteredtree']" 

"['use', 'setusehashlookup', 

'internal', 'org', 'eclipse', 'ui', 

'dialogs', 'filteredtree', 
'filteredtree']" 

 

After the data had been appropriately gathered and captured 

from the Bugzilla, we apply some data pre-processing 

techniques to clean the bug reports and eliminate the 

superfluous content. There were no longer any tags, URLs, 

links, or numbers. As a result, deleting them aids in shrinking 

the feature space. 

 

C. Feature Extraction 

After preprocessing, data must be converted into features for 

modeling. Raw text input data cannot be directly used to use 

machine learning techniques. The acquisition of contextual 

characteristics of the text is required in order to convert it into 

feature vectors. Symbolic and numeric characters are 

represented by features in machine learning and pattern 

TF-IDF: These two numbers are multiplied to provide the TF- 

IDF score of a word in a document. The word becomes more 

significant in that specific document the higher the score. The 

calculation is shown in following (3). 
𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 (3) 

 

2) GloVe 

The GloVe [29],an unsupervised learning method for Word 

Representation, is a popular algorithm for generating word 

embeddings in machine learning. Word embeddings are dense 

vector representations of words that capture semantic and 

syntactic relationships between words based on their contexts 

in a given corpus of text. The primary goal of GloVe is to create 

word embeddings that capture the meaning of words by 

leveraging the statistics of word co-occurrence in a large 

corpus. It combines elements from two different approaches to 

word embeddings: count-based methods like Latent Semantic 

Analysis and predictive methods like Word2Vec. 

3) Word2Vec 

Word2Vec [30] is a popular algorithm in machine learning that 

is used for representing words as numerical vectors in a high- 

dimensional space. It was introduced by Tomas Mikolov et al. 

at Google in 2013 and has since become a fundamental tool for 

NLP tasks. The main idea behind Word2Vec is to capture the 

semantic and syntactic relationships between words by learning 

vector representations based on their contextual usage in a 

given corpus of text. The algorithm operates on the assumption 

that words appearing in similar contexts tend to have similar 

meanings. For example, in the sentence "The cat sat on the 

mat," the words "cat" and "mat" are more likely to be similar in 

meaning because they both appear in the context of a sentence 

about sitting on an object. 

 

D. Classification 

Description before 

lowercasing Description after lowercasing 

"['PDE', 'quickfix', 'creates', 

'invalid', 'tag']" 

"['pde', 'quickfix', 'creates', 

'invalid', 'tag']" 

"['OpenJ', 'Git', 'fail', 'master', 

'builds', 'block']" 

"['openJ', 'git', 'fail', 'master', 

'builds', 'block']" 

"['Use', 'setUseHashlookup', 

'internal', 'org', 'eclipse', 'ui', 

'dialogs', 'filteredtree', 

'FilteredTree']" 

"['use', 'setusehashlookup', 

'internal', 'org', 'eclipse', 'ui', 

'dialogs', 'filteredtree', 

'filteredtree']" 
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Then LSTM deep learning algorithm and ANN algorithms are 

used to forecast the priority levels in a bug report. Cleaning and 

feature extraction of the data resulted in the separation of the 

data into training and testing data, with training data accounting 

for 70% and testing data for the remaining 30% by the 

experiment. The different approaches generate for priority 

prediction by loading it into ANN and LSTM independently. 

 

1) LSTM 

LSTM is a type of recurrent neural network, (RNN [31]) 

architecture that is designed to handle and model long-term 

dependencies in sequential data. It overcomes the limitations of 

traditional RNNs by introducing memory cells and gating 

mechanisms. The key idea behind LSTM is the concept of a 

memory cell, which allows the network to remember 

information over long sequences. The memory cell is 

responsible for storing and updating information, selectively 

forgetting or retaining it based on its relevance to the current 

context. Overall, LSTM is a powerful RNN variant that enables 

the modeling of long-term dependencies and has been widely 

adopted in various domains of machine learning and natural 

language processing due to its ability to effectively handle 

sequential data. 

 

2) ANN 

Artificial neural networks, often known as neural networks, are 

models that use computer techniques to imitate the behavior of 

neuron-based biological systems [32]. ANN is with machine 

learning and pattern recognition capabilities. The central 

nervous system of animals serves as the model's inspiration. 

This network of "neurons" may compute values from input 

data. Three layers, including an input layer, a hidden layer, and 

an output layer, may be present in a neural network. 

 

LSTM deep learning algorithm and the ANN algorithm were 

chosen due to their strengths in handling sequential data, 

learning complex relationships [33], and their established 

effectiveness in similar machine learning tasks based on the 

literature review. 

In this study, TF-IDF, GloVe, and Word2Vec feature vectors 

were used to create three LSTM prediction model separately. 

Then, three distinct models that were in alignment with the 

LSTM algorithm were combined to make an ensemble model. 

When each model predicts the priority, we selected the majority 

by comparing three results generated by three models as below 

table 9 shows. 

Table 9. Selecting majority value using three LSTM models 

including ANN model to select the best one. The process of 

ensemble model creation is explained in Figure 3. 

 

Figure 3. Process of making ensemble model 

In parallel, ANN model also created using same three feature 

vectors and we were identified results were lower than the 

LSTM Model results. And TF-IDF is the only method which is 

generating highest accuracy among those three feature vector 

generations with ANN. So, we decided to use ANN with TF- 

IDF for further comparison. 

 

After creation of all five models, considering actual priority 

values and predicted priority values under all models including 

ANN model, LSTM GloVe, LSTM Word2Vec, LSTM TF- 

IDF, and ensemble model we done the validation to find a 

better model using selected 5000 total data set. 

 

IV. RESULTS & EVALUATION 

The experimental platform used Microsoft Windows 11 on a 

PC with processor 8th Gen Intel(R) Core (TM) i3-8145U CPU 

@ 2.10 GHz 2.30 GHz, 4.00 GB RAM to training, testing, and 

implementing model. 

The evaluation is based on three feature vector extraction 

methods with LSTM algorithm and ANN algorithm under 

collected bug reports via Bugzilla. The experiment is designed 

to classify the descriptions of bug reports into five priority 

levels using above feature vectors and algorithm. The model is 

being developed in Python programming language. 

 

Accuracy, precision, recall, and f-measure were computed for 

ANN and LSTM algorithm under three feature vectors using 

below (4) – (7) respectively. 

Following (4) used to evaluate the accuracy of the model. To 

do that, total number of correct predictions should divide by 

total number of predictions. Following (5) used for measure the 

actually correct proportion of positive identifications. We used 

recall and f-measure for the evaluation and calculated using (6) 

and (7) respectively. 
 

Then assigning those majority value as the ensemble model 

result, we compared it with the individual algorithm results 

𝑁𝑜 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
(4) 
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𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 
𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 

 

A. Results of Model Implementation 

(5) 

 
(6) 

 

 
(7) 

size as optimum value for our evaluation process. Then we 

divide dataset into 77% of training data and 33% of testing data. 
Table 11. Evaluation of accuracy according to the different training 

data set 

 

First, we implement the three LSTM models under different 

feature vectors and ANN model with TF-IDF. In this section 

shows the results based on above evaluation measurements on 

full dataset of 20,501 bug reports. Based on the performance of 

each model, Figure 4 shows the accuracy results for ANN and 

LSTM classifier under three feature extraction methods. 

According to the results, the accuracy of ANN model is 80%, 

LSTM TF-IDF model is 78.10%, LSTM GloVe model is 

81.47% and LSTM Word2Vec model is 75%. Based on the 

results, LSTM GloVe model shows the highest accuracy 

among all four models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Model Implementation Accuracy of ANN and LSTM under 

TF-IDF, GloVe, Word2Vec 

Table 9 shows the evaluation result for precision, recall, and f- 

measure of ANN model and LSTM model under three different 

feature vectors. 

Table 10. Precision, recall, f-measure of ANN & LSTM under TF- 

IDF, GloVe, Word2Vec 

 

Feature Vector Precision Recall F- measure 

LSTM TF-IDF 96% 81% 87% 

LSTM GloVe 98% 83% 89% 

LSTM Word2Vec 94% 77% 84% 

ANN TF-IDF 93% 83% 83% 

 

Furthermore, evaluation was consider using different 

percentages (57%, 67%, 77% and 87%) of training data. 

Accuracy values for ANN and LSTM under three feature 

vectors were as in Table 10. By considering the results of 

different training data sizes, we identified 77% of training data 

 

 

 

 

 

And also, hyperparameters of the ANN and LSTM classifiers 

were found, and the obtained optimal value for 

hyperparameters is provided in Table 11 as below and 

evaluation of accuracy based on those parameters shown in 

Figure 5 – Figure 8. 

Table 12. ANN - LSTM Classifier Hyperparameters 
 

Classifier Optimum values discovered for the 

hyperparameters 

LSTM  with 

TF-IDF 

Epochs= 100, batch_size= 52, optimizer = ‘adam’ 

LSTM  with 

GloVe 

Epochs= 200, batch_size= 33, optimizer = ‘adam’ 

LSTM  with 

W2V 

Epochs= 200, batch_size= 43, optimizer = ‘adam’ 

ANN with 

TF-IDF 

Epochs=250, batch_size=43, optimizer = ‘adam’ 

 

B. Results of Data Validation 

Priority values were predicted using LSTM three models which 

we implemented using TF-IDF, GloVe and Word2Vec and 

ANN with TF-IDF under validation dataset of 5000 bug 

reports. Then we check the algorithm outcomes by combining 

different feature extraction techniques results, we found 

majority priority value for each bug description. By 

considering that majority value we got the ensemble model 

priority value as shown in the Table 12 examples. 

Table 13. Generating majority value for ensemble model 
 

 

 

Bug 

Report 

 

 

GloVe 

Priority 

 

 

TF IDF 

Priority 

 

 

Word2Vec 

Priority 

Majority 

Value 

(LSTM 

Ensemble 

model) 

1 P1 P1 P1 P1 

2 P2 P1 P1 P1 

3 P3 P3 P3 P3 

4 P4 P3 P3 P3 

5 P5 P5 P4 P5 

Classifier 
Training data size 

57% 67% 77% 87% 

LSTM TF- IDF 

Accuracy (%) 

78% 78% 78% 78% 

LSTM GloVe 

Accuracy (%) 

78% 
77% 

81% 78% 

LSTM W2V 

Accuracy (%) 

75% 74% 75% 74% 

ANN TF-IDF 

Accuracy (%) 

72% 76% 80% 78% 
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Then considering actual priority values and predicted priority 

values under five models including ANN model, LSTM GloVe, 

. 

LSTM Word2Vec, LSTM TF-IDF, and ensemble model we 

done the evaluations to find a better model 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 5: (a) Epochs accuracy and (b) Batch sizes accuracy of LSTM with TF-IDF 
 

a) (b) 
Figure 6: (a) Epochs accuracy (b) and Batch sizes accuracy of LSTM with GloVe 

 

(a) (b) 

Figure 7: (a) Epochs accuracy (b) and Batch sizes accuracy of LSTM with Word2Vec 
 

(a) (b) 

Figure 8: (a) Epochs accuracy (b) and Batch sizes accuracy of ANN with TF-IDF 
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When considering actual priority and predicted priority values 

ensemble model achieving more accuracy than other three 

individual models under ANN and LSTM classifier. Following 

Table 13 shows the summary of predicted values and its 

accuracy. Here total predictions are 5000. 

Table 14. Summary of prediction and its accuracy with the ensemble 

model using validation data 
 

Classifier True 

Predictions 

Wrong 

Predictions 

Accuracy 

ANN TF-IDF Model 4014 986 80% 

LSTM GloVe Model 4479 521 89% 

LSTM TF-IDF Model 4447 553 88% 

LSTM W2V Model 4242 758 84% 

LSTM Ensemble Model 4600 400 92% 

 

Furthermore, following Recall, Precision, and F- measure were 

calculated under five prediction models based on validation 

data shown as Table 14. 

Table 15. Precision, recall, f-measure of ANN, LSTM & Ensemble 

models using validation data 
 

Models Precision Recall F- measure 

ANN TF-IDF Model 79% 81% 88% 

LSTM TF-IDF Model 89% 95% 91% 

LSTM GloVe Model 89% 96% 93% 

LSTM Word2Vec Model 89% 88% 78% 

LSTM Ensemble Model 94% 98% 95% 

 

When comparing all the five models, ensemble model achieved 

the highest accuracy as well as best performance among all 

other evaluation metrics. It means ensemble model can gain 

more reliable and accurate predictions than other four models. 

 

C. Results of statistical test (Student t-test) 

 

It’s important to use statistical hypothesis test to select the final 

model. Statistical significance tests are designed to address and 

compare the performance of machine learning models. In this 

study we used student t-test for find a better model. In the case 

of comparing the performance of models, we have to select two 

models to perform the paired Student’s t-test. Among the above 

five models, based on the highest accuracy, LSTM GloVe 

model and Ensemble model were compared. In this student t- 

test which can compare the means of two independent samples 

to see if they are significantly different from each other. We 

conducted a two-sample t-tests to compare the means of these 

two sets of accuracies as below table. 

 
Table 16. Results of t-test 

The t-statistic is significantly high at 6.5027 while p-value is 

extremely low at 0.0001 Since the p-value is much less than 

0.05, we reject the null hypothesis that there is no difference 

between the accuracies of two models. This indicates that the 

observed difference in accuracies between the LSTM GloVe 

model and the Ensemble model is statistically significant. 

 

Therefore, based on this statistical evidence, we concluded that 

the proposed models perform statistically significant. Based on 

the accuracies, the ensemble model selected as the better model 

among these two algorithms. 

 

IV. CONCLUSION 

 

The process of manually assigning a bug priority value to a bug 

report takes time. There is a chance that a developer will 

reassign a wrong value, and this can affect several important 

software development processes. The main objective of this 

research is to incorporate three feature extraction approaches to 

create a model for automatically predicting the priority of bugs 

using the ANN and LSTM deep learning algorithm as a 

solution to the aforementioned problem. 

We collect approximately 20,500 bug reports from Bugzilla; 

bug tracking system. Following preprocessing, created three 

models using the LSTM classifier and three unique feature 

vectors including GloVe, TF- IDF, and Word2Vec. After 

comparing the three LSTM models' outputs, the majority value 

was determined for creating an ensemble model. In parallelly, 

ANN model was built under TF-IDF feature vector. After 

validating those five models on 5000 bug reports and 

comparing outcomes, it was found that the ensemble model 

generated the most accurate results than other four models. In 

the prediction procedure, the ANN model’s accuracy was 

80.28%, LSTM GloVe model's accuracy was 89.58%, the 

LSTM TF-IDF model's accuracy was 88.94%, the LSTM W2V 

model's accuracy was 84.84%, and the accuracy of the 

ensemble model was 92%. For the purpose of evaluating the 

models, accuracy, recall, precision, and f-measure were used. 

Ensemble model achieving the highest values in all evaluation 

matrixes and shows it was the best method to predict the bug 

priority value in bug fixing during the software development 

process. As well as based on this statistical evidence, the 

models are statistically significant with higher t-statistic value 

6.5027 and p-value 0,0001. 

 

These research findings will assist programmers, software 

developers and project managers in fixing bugs in software 

systems more quickly than before. As well as new researchers 

can gain knowledge regarding automate the bug priority 

prediction. In the future studies, we intend to gather data from 

sources other than Bugzilla, such as JIRA or a GitHub 

repository. Additionally, we try to apply other deep learning 

algorithms to improve the accuracy. And also, we are planning 

to improve the statistical test using all the proposed models in 

the future. 
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