

17

An Approach to Examine and Recognize Anomalies
on Cloud Computing Platforms with Machine
Learning Concepts
MPGK Jayaweera1, WMCJT Kithulwatta2,3#, and RMKT Rathnayaka3,4
1Department of Computing and Information Systems, Faculty of Computing, Sabaragamuwa University of Sri Lanka,
Belihuloya, Sri Lanka
2Department of Information and Communication Technology, Faculty of Technological Studies, Uva Wellassa University of
Sri Lanka, Badulla, Sri Lanka
3Research Center for Grey Systems and Uncertainty Analysis (GSUSL), Department of Physical Sciences & Technology,
Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
4Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka,
Belihuloya, Sri Lanka

#chirantha@uwu.ac.lk

ABSTRACT Cloud computing is one of the most rapidly growing computing concepts in today's information technology
world. It connects data and applications from various geographical locations. A large number of transactions and the hidden
infrastructure in cloud computing systems have presented the research community with several challenges. Among these,
maintaining cloud network security has emerged as a major challenge. It is critical to address issues in the quickly changing
cloud computing market in order to guarantee that businesses can fully utilize cutting-edge technology, uphold strong
security protocols, and maximize operational effectiveness. Businesses that successfully navigate these obstacles can
maintain their competitiveness in a dynamic digital ecosystem by improving scalability, leveraging the flexibility provided
by the cloud, and adapting to technological changes with ease. Anomaly detection (or outlier detection) is the identification
of unusual or suspicious data that differs significantly from the majority of the data. Research on anomaly detection in
cloud network data is crucial because it enables businesses to more rapidly and efficiently recognize potential security
threats, network performance concerns, and other issues. Recently, machine learning methods have demonstrated their
efficacy in anomaly detection. This research aimed to introduce a novel hybrid model for anomaly detection in cloud
network data and to investigate the performance of this model in comparison to other machine learning algorithms. The
research was conducted with the UNSW-NB15 anomaly dataset and employed various feature selection and pre-processing
techniques to prepare the data for model training. The hybrid model was built using a combination of Random Forest and
SVM algorithms and the process was evaluated using metrics such as F1-Score, Recall, Precision, and Accuracy. The result
showed that the hybrid model has 94.23% accuracy and a total time of 109.92s which is the combination of the train time
of 100.45s and prediction time of 9.47s. The limitations of the study include the class imbalance problem in the dataset and
the lack of real-world applications for testing. The research suggests future work in the application of hybrid models in
anomaly detection and cloud network security and the need for further investigation into the potential benefits of such
models.

KEYWORDS: Anomaly Detection, Cloud Computing, Machine Learning, Monitoring

I. INTRODUCTION
The technology of cloud computing virtualization provides
efficient resources for end users. The characteristics of cloud
computing include manageability, scalability, and availability.
In addition, cloud computing has the advantages of economy,
on-demand service, convenience, universality, multi-tenancy,
flexibility, and stability [27]. Cloud computing mainly provides
three service delivery models and four development patterns:
infrastructure as a service (IaaS), platform as a service (PaaS)
and software as a service (SaaS), public cloud, private cloud,
hybrid cloud, community cloud, and virtual private cloud [29].
Today, cloud computing has integrated with other computing
technologies like fog computing, grid computing, Docker

containers, IoT, etc [28], [30], [31]. Cloud security is one of the
most important aspects of cloud computing because it involves
thousands of user transactions, information, and
communication. The availability, integrity, and confidentiality
of cloud computing platforms or services must be ensured to
provide secure cloud computing platforms/services. Security
vulnerabilities and challenges arise from the usage of cloud
computing services. Currently, cloud computing models are the
primary source of these challenges and vulnerabilities [32]. The
intruders exploit the weakness of cloud models in accessing the
users’ private data, by attacking the processing power of
computer systems [3].

18

An anomaly is an observation that differs so significantly from
previous observations that it raises suspicion that it was caused
by a distinct mechanism. It's frequently a sign of something
unexpected or problematic happening. Anomaly detection is
the identification of rare item events or observations that raise
suspicion by differing significantly from the majority of data.
They are slightly or majorly different from the majority of data
and anomaly detection can help to find outliers and problems
in data. In other words, anomalies are data points or patterns in
a dataset that differ significantly from the expected or usual
behavior. These anomalies can be produced by several things,
including measurement errors, sensor malfunction, data
corruption, or system failure, and they can happen
spontaneously or as a result of mistakes in data collecting or
processing. Finding these odd data points or patterns in a
dataset that are frequently a sign of a deeper issue or problem
is called anomaly detection. A dataset may contain a variety of
anomalies, including point anomalies that only affect a single
instance of data, contextual anomalies that only occur under
certain circumstances, collective anomalies that involve
multiple data points that behave similarly, and collective
contextual anomalies that involve multiple data points that
behave similarly only under certain circumstances. In several
fields, including network intrusion detection, fraud detection,
defect detection, and monitoring of complex systems, anomaly
detection is a critical step [6][7].

Finding strange or unexpected data points or patterns in a
dataset is the process of anomaly detection. Anomalies can be
found using a variety of techniques, such as statistical
techniques, clustering, classification, deep learning, distance-
based techniques, and time-series-based techniques. Quantiles,
standard deviation, and other statistical metrics are used in
statistical procedures to detect data points that significantly
depart from the norm. Anomalies are data points that do not
belong to any cluster and are grouped by clustering algorithms.
To categorize new data points as normal or abnormal,
classification algorithms are trained on labeled data. Deep
learning algorithms discover the underlying structure of the
data and the location of data points that deviate from this
pattern to find anomalies. Measures of the distance between
data points are used by distance-based algorithms to detect data
points that are far away from other ones. To identify anomalies,
time-series-based algorithms employ techniques like moving
average, exponential smoothing, ARIMA, and Prophet. A
combination of several methods is frequently used to boost the
robustness and accuracy of anomaly detection. The choice of
the method relies on the nature of the data and the particular
requirements of the application [2].

The connection between cloud network data and anomaly
detection is it provides an analysis of unusual activities, and
unexpected activities through anomaly detection algorithms.
Effective monitoring and security procedures are becoming
more and more important as more businesses shift their data

and apps to the cloud. Anomaly detection can aid in the
identification of potential security vulnerabilities and
performance problems, enabling businesses to take
preventative action to lessen these risks and their effects on
operations. A wealth of knowledge regarding the functionality,
security, and use of cloud-based systems is contained in cloud
network data. Log files, performance indicators, network
traffic, and other sorts of data are examples of this data. These
data can be examined by anomaly detection algorithms to find
patterns or anomalies that point to issues with the network or
its elements, such as security breaches, performance issues, or
other suspicious activities. Additionally, anomaly detection in
cloud network data aids organizations in conforming to several
legal standards about the security, privacy, and integrity of their
data. Automated anomaly detection is a crucial tool for
preserving the security and dependability of cloud-based
systems since it gets more challenging to manually detect and
react to anomalies as more data is stored and processed in the
cloud [1][6].

II. MOTIVATION
The goal of anomaly detection is to use approaches that can
discover relevant anomalies in data without producing a large
number of false positives.

Cloud security is one of the most important aspects of cloud
computing because it involves thousands of user transactions
and information. The availability, integrity, and confidentiality
of cloud computing platforms or services must be ensured to
provide secure cloud computing platforms/services. Security
vulnerabilities and challenges arise from the usage of cloud
computing services. Currently, cloud computing models are the
primary source of these challenges and vulnerabilities. The
intruders exploit the weakness of cloud models in accessing the
users’ private data, by attacking the processing power of
computer systems [8][10].

The detection of anomalies in data has a long history and a wide
range of applications. An anomaly or outlier is an observation
that differs so significantly from other observations that it
raises the possibility that it was generated by a different
mechanism. It can also be defined as an outlier observation that
shows up to deviate significantly from the rest of the sample
members in which it occurs.

Due to the complexity of modern systems, highly available
cloud service requirements in a cloud environment are difficult
to guarantee and can thus only be ensured with great effort. As
a result of these trends, there is an increasing demand for
intelligent applications that automatically detect anomalies and
provide suggestions for solving or at least mitigating problems
so that a negative impact on service quality does not cascade.
What constitutes an anomaly in each case is determined by the
sample and the methodology. Anomalies are classified into
three types in general: Anomalies can be classified into three

19

types namely point anomalies, collective anomalies, and
contextual anomalies. There are primarily three approaches for
detecting anomalies (machine learning, deep learning, and
statistical approach). After reviewing previous studies, the
study discovered that machine learning outperforms the other
two methods in detecting abnormalities. Although the practice
mentioned above provides ways to detect anomalies in a
dataset. The research community still knows little about which
is the most suitable algorithm for detecting anomalies within a
cloud environment. The author is motivated to close this gap of
knowledge and try to use a specific machine learning algorithm
to detect anomalies using a data set. After analyzing the team
can decide whether this algorithm is suitable or not for
detecting anomalies within a cloud network [4][5][10][24].

A. Significance of the study
It is critical to address anomaly problems in cloud computing
platforms because they have an immediate effect on the
security and dependability of digital infrastructure. Anomalies
can jeopardize data integrity and result in breaches and
unauthorized access, regardless of whether they are caused by
malevolent activity or system malfunctions. It is imperative to
promptly identify and address irregularities in order to
assurance the unceasing procedure of cloud-based services,
protect confidential data, and uphold user confidence. In the
quickly changing world of digital technology, proactive tactics
for anomaly management not only improve the general
resilience of cloud systems but also help to build a strong
cybersecurity foundation.

B. Research objectives
To keep a clear direction within the research study, below
research objectives (RO) were made.

RO1: To introduce a novel hybrid model and compare the
performance of the hybrid model to other machine learning
models, such as single-algorithm models, in detecting
anomalies in cloud network data.

RO2: To look into how different algorithmic combinations
affect, how well the hybrid model performs while looking for
anomalies in data from cloud networks.

RO3: To investigate how well the novel hybrid model handles
various data kinds and investigate how various feature
selection and pre-processing techniques affect the novel hybrid
model's ability to detect anomalies in cloud network data.

C. Contribution of the paper
By presenting a novel hybrid model that combines Random
Forest (RF) and Support Vector Machine (SVM) techniques,
the research significantly advances the subject of anomaly
detection in cloud network data. This hybrid method offers a
unique solution for anomaly detection problems, marking a
significant deviation from the traditional application of single-

algorithm models. In contrast to stand-alone RF models, the
hybrid model aims to improve detection robustness and
accuracy by combining the advantages of both RF and SVM.

One of the primary contributions is the extensive testing of the
proposed hybrid model against multiple machine learning
methods, including multiple RF and SVM configurations and
an MLP model.

III. RESEARCH METHOD
Machine learning models such as Isolation Forests, One-Class
SVM, and Autoencoders are frequently employed in anomaly
identification. These models are significant because, in the
absence of labeled training data, they are highly effective at
identifying patterns and abnormalities in a variety of datasets.
One-Class SVM is skilled at identifying outliers in high-
dimensional spaces, Autoencoders learn intrinsic data
representations, and Isolation Forests effectively isolate
anomalies by building random decision trees. These tools are
useful for detecting deviations from normal patterns in a variety
of applications, including cybersecurity and system
monitoring. This approach involves building up a hybrid model
combining SVM and random forest algorithms. This research
used the UNSW-NB15 dataset for the study. The methodology
is concluded here after identifying and analyzing the
comparisons between different algorithm models.

The combined strengths of Random Forest (RF) and Support
Vector Machine (SVM) in handling different areas of anomaly
detection in cloud network data led to their selection for the
hybrid model. As an ensemble learning technique, RF is well-
known for its stability and resistance to overfitting. It is
particularly good at capturing complicated relationships within
data. However, SVM is good at managing non-linear patterns
by determining optimal decision boundaries, especially when
employing non-linear kernels. The hybrid model combines the
power of SVM's ability to identify distinct decision boundaries
with the versatility of RF's modeling techniques to attempt to
capitalize on the differences between the two approaches.

A. Gather Relevant Data
The UNSW NB15 dataset was used in this research study to
study the usage of cloud network data to detect anomalies. The
loading of the UNSW NB15 dataset was the first stage in the
study procedure. The dataset included network traffic
information that can be used to develop and test anomaly
detection methods.

B. Pre-processing and Feature Selection
Preprocessing the dataset came after the data had been loaded.
Make sure the data is prepared for usage in the feature selection
process, this may involve cleaning and normalizing it. The
process of choosing a subset of the features in a dataset that is
most important for anomaly detection is known as feature

20

selection. Techniques like correlation analysis or mutual
information can be used for this.

C. Train the Model
The process of training models using the chosen features
followed the feature selection phase. The dataset was divided
into training and testing sets, and several anomaly detection
models were trained and evaluated using these sets. In this
study, models like Random Forest (Estimators = 100), Random
Forest (Estimators = 50), Random Forest (Estimators = 150),
SVM (Kernel - rbf, gamma-scale), SVM (Kernel - sigmoid,
gamma-scale), SVM (Kernel - poly, gamma-scale), and a
hybrid model that combined the best features of Random Forest
and SVM models were used.

D. Analyze the Model
A comparison was done once the models had been trained and
assessed to see which model performed the best on the UNSW
NB15 dataset. The evaluation measures used in the comparison
included accuracy, precision, recall, and F1-score. The
comparison's findings were used to evaluate the performance
of various models for finding anomalies in cloud network data.

E. Summary of the Methodology
In conclusion, the study used the UNSW NB15 dataset to
evaluate the hybrid model through preprocessing, feature
selection, model training using random forest models, SVM
models, and a hybrid model, and comparing all the models to
determine which is the best.

This research study recommended the following methodology
step-wise to better understand:

 Data collection: The UNSW-NB15 anomaly dataset
was used.

 Data preprocessing and feature selection: The data
was preprocessed and features were selected for the
training and testing sets.

 Model training: The model was trained using
Random Forest and SVM algorithms [34].

 Hybrid model construction: A novel hybrid model
was built due to their higher accuracy and other
aspects.

 Model evaluation: The performance of the novel
hybrid model was evaluated and compared to that of
other machine learning models, such as single-
algorithm models, Random Forest (Estimators = 100),
Random Forest (Estimators = 50), Random Forest
(Estimators = 150) and SVM (Kernel - rbf, gamma -
scale), SVM (Kernel - sigmoid, gamma - scale), SVM
(Kernel - poly, gamma - scale), and MLP(ANN)
model.

 Data analysis: The results were analyzed and
discussed in terms of the research objectives,
including the impact of various algorithmic

combinations on the performance of the hybrid model,
the performance of the hybrid model compared to that
of single-algorithm models, and the potential future
research pathways for the application of hybrid
models in anomaly detection and cloud network
security.

 Limitations and recommendations: The limitations
of the study were identified as the class imbalance
problem in the dataset and future research
recommendations were made to address the class
imbalance problem in the dataset, further investigate
the potential of hybrid models in anomaly detection
and cloud network security, and investigate the rate of
false positives and false negatives, computational
resources and the ease of understanding of the hybrid
model.

IV. DESIGN, IMPLEMENTATION, AND ANALYSIS
OF THE RESULTS
This section describes the model’s design comprehensively
with the model’s basic architecture and the proposed model's
workflow. Here several diagrams are presented and discussed
to explain model functions. The technologies, algorithms,
special methods, and functions used in implementation were
defined in this section. Further, this section discussed the
findings of the phases of implementation.

A. Gathering the Relevant Data Set
The UNSW-15 dataset was a good option for the study since it
offers a thorough assessment of the proposed approach's
capacity to recognize various sorts of attacks. The dataset
included both known and undiscovered attack types, allowing
for the evaluation of the approach's capacity to identify several
distinct attacks. Additionally, a thorough evaluation of the
performance of the approach is possible due to the dataset's size
and abundance of instances. The dataset also included real-
world network traffic statistics, enhancing the relevance and
applicability of the study's findings to real-world
circumstances. Furthermore, the performance of the proposed
technique in other current ways can be easily compared thanks
to the UNSW-15 dataset, which is a well-known and often-used
dataset in the field of network intrusion detection. A fair
assessment of the performance of the suggested strategy is
possible thanks to the dataset's balance, which includes a
sufficient number of both normal and attack occurrences. The
dataset is additionally current and contains up-to-date network
traffic data, increasing its applicability to current real-world
settings.

Loading Data
First, the author read a CSV file and created a DataFrame object
in Python using the Pandas module. In particular, it loads the
data from the CSV file at the supplied file path using the read
csv() function and stores it in the variable 'df'. The DataFrame
is a strong and adaptable data structure that makes it simple to
manipulate and analyze data presented in tabular form. The

21

Figure 1: Information of the loaded data

author then used to show the data frame's first five rows. This
can be helpful for rapidly verifying that the data has been
loaded properly and previewing the contents of the DataFrame.
Table 1 presents the whole content for the loaded data in the
study.

Table 1: The content of the loaded data

ind

ex

id dur pro

to

ser

vice

stat

e

spk

ts

dpk

ts

sbyte

s

0 1 1.10E-05 udp - INT 2 0 496

1 2 8.00E-06 udp - INT 2 0 1762

2 3 5.00E-06 udp - INT 2 0 1068

3 4 6.00E-06 udp - INT 2 0 900

4 5 1.00E-05 udp - INT 2 0 2126

Further, figure 1 demonstrates the metadata of the loaded data
comprehensively.

Furthermore, table 2 displays a tabular description of the loaded
data.

Table 2: Description of the loaded data

id dur spkts dpkts sbytes dbytes

cou
nt

82332 82332 82332 82332 82332 82332

mea
n

41166.
5

1.0067
56

18.666
47

17.545
94

7993.9
08

13233.79

std 23767.
35

4.7104
44

133.91
64

115.57
41

171642
.3

151471.5

min 1 0 1 0 24 0

25% 20583.
75

8.00E-
06

2 0 114 0

50% 41166.
5

0.0141
38

6 2 534 178

75% 61749.
25

0.7193
6

12 10 1280 956

max 82332 59.999
99

10646 11018 143557
74

14657531

B. Data Pre-Processing and Feature Selection
Pre-processing the data is a crucial stage in the methodology of
the study since it guarantees that the UNSW-15 dataset is in a

format that the model can use. The UNSW-15 dataset's data
pre-processing may entail several important procedures.

Removal of Irrelevant Columns
To remove particular columns from the DataFrame, the author
used the DataFrame function drop(). It starts by making a list
of the columns that should be deleted, author dropped "id" and
"attack cat." The drop() method was then called with this list as
its first argument. When axis=1 is used as the second
parameter, pandas is instructed to remove the columns. The
third parameter, inplace=True, is set to mean that the original
DataFrame should be used for the operation. As a result, this
will delete the columns "id" and "attack cat" from the
DataFrame "df," update the original DataFrame to reflect the
deletion of those columns, and return no new DataFrame.

Clamping
Clamping is a preprocessing method for reducing the range of
values in a dataset. It is usually applied to stop outliers from
skewing the results of subsequent processes, including
statistical analysis or machine learning. Putting a maximum
and minimum threshold for the values in a dataset entails
"clamping," or setting any values outside of this range to the
threshold value closest to them. This can help prepare data for
analysis and clean it, which can also help to increase the
precision and stability of machine learning models. In this
research, the author prunes extreme values to make
distributions less skewed. Features are reduced to the 95th
percentile when their maximum values exceed 10 times the
median value.

In summary, the author produces descriptive statistics for the
numeric columns after first filtering the original DataFrame to
only include those columns. The outcome is a new DataFrame
that gives an overview of the distribution of data in the original
DataFrame's numerical columns. Then, the author determines
whether the maximum value of any column is bigger than 10
times the median value and greater than 10, and if it is, it
replaces the values in that column with the 95th percentile's
value if they are higher, else the value is left alone. If the
DEBUG setting is set to 1, each column will print some
information; otherwise, nothing will be printed.

Apply the log function on skewed-right numerical numbers
The author added one to each value before applying the natural
logarithm to the values of each column in the numeric
DataFrame df numeric if that column's minimum value is zero
and there are more than 50 unique values in that column. This
avoids using the undefined log(0). If the DEBUG setting is set
to 1, each column will print some information; otherwise,
nothing will be printed.

Reduce labels in categorical features
Reducing the cardinality of features to 5 or 6. Take the top 5
occurring labels in the feature as labels and set the remainder

22

to '-' as seldom used labels. In this, the author determines
whether each given column has more than six distinct values.
If this is true for any given column, the value in that column is
replaced with a '-' if it is not one of the most frequent values
there; otherwise, it is left alone. If the DEBUG setting is set to
1, each column will print some information; otherwise, nothing
will be printed. The scenario for reducing the labels in
categorical features is presented in Table 3 below.

Table 3: Reduce labels in categorical features

index proto service state

count 82332 82332 82332

unique 131 13 7

top tcp - FIN

freq 43095 47153 39339

Best Features
Univariate statistical tests to determine which features best
predict the target feature. Utilizing Python's scikit-learn
module, choose the best features from a DataFrame, and
display the outcomes. For feature selection, it first imports the
required modules SelectKBest and chi2. The SelectKBest class
is then created with the chi2 scoring function and the input
k='all', instructing it to select all characteristics. The best
features object is fitted to the input data by taking into account
the goal variable y and the input data X. The scores and feature
names are concatenated to produce a new DataFrame. The new
DataFrame's columns now go by the names "feature" and
"score." The DataFrame is then sorted based on the feature
scores, and a bar chart is generated to show the top 21 features.

Figure 2 presents a bar chart for the top features.

Figure 2: A bar chart for the top features

Encoding Categorical Features
One-hot encoding is used. None of the categorical features are
ordinal. In this study, the author tried picking particular rows
and columns from the original DataFrame "df" to create two
new variables, "X" and "y," and it is displaying the first five

rows of the DataFrame "X". The particular encoding
categorical features are presented in table 4.

Table 4: Encoding Categorical Features

inde

x

dur prot

o

serv

ice

state spkts dpkt

s

sbytes

0 1.10E-

05

udp - INT 0.6931

47

0 6.2065759

27

1 8.00E-

06

udp - INT 0.6931

47

0 7.4742048

06

2 5.00E-

06

udp - INT 0.6931

47

0 6.9735430

2

3 6.00E-

06

udp - INT 0.6931

47

0 6.8023947

63

4 1.00E-

05

udp - INT 0.6931

47

0 7.6619975

59

After that, the author used the "OneHotEncoder" class to apply
the One-Hot-Encoding approach to columns 1, 2, and 3 of the
DataFrame X while leaving the other columns alone to be
handled by the "ColumnTransformer" class. Additionally, a
numpy array was being created from the encoded DataFrame.

After that, unique values of a few columns in a DataFrame are
extracted using Python's Pandas package, and they are then
inserted into a list of feature names in a certain order. These
three for loops iterate over the distinct values of the 'state',
'service', and 'proto' columns of the DataFrame 'df' and add
them to the list of feature names in reverse order while
excluding the first element. To facilitate additional analysis or
model training, the author has included the distinctive values
from these columns in the list of feature names.

C. Modeling and Evaluation
This entails training the SVM and random forest parts of the
hybrid algorithm, training and test split, standardizing
continuous features, training with random forest and SVM
separately, and implementing a hybrid model and comparison.

Train Set Split
Using stratified sampling, the data in this part are divided into
training and test sets. The input data "X" and the target variable
"y" are divided into two datasets: the training set and the testing
set, using the scikit-learn library. The dataset, the percentage of
the dataset that should be given to the testing set, a random seed
to assure repeatability, and the stratification of the data are all
inputs to the "train test split" function, which was employed by
the author in this study. The 'X train', 'X test', 'Y train', and 'Y
test' datasets will be utilized for the models' training and testing,
respectively. This split is an essential stage in the machine
learning process because it enables the author to predict how
well the model will perform on new data and avoid overfitting.

23

Figure 3: Prediction (Random Forest 100)

Figure 4: Model Performance (Random forest
100)

Figure 5: Confusion Matrix (Random Forest 100)

Standardize continuous features
The continuous features are scaled using a standard scaler to
ensure that they are all in the same size order. To normalize the
numerical features of the training and test datasets, use the
scikit-learn library. It makes use of the "StandardScaler" class
from the library's "preprocessing" module to scale the
numerical features to unit variance and standardize them by
removing the mean. By utilizing the 'fit transform()' method,
which first fits the scaler to the data before transforming it, it
generates an instance of the 'StandardScaler' class and applies
it to the numerical characteristics of the training dataset. The
test dataset's numerical features are then normalized using the
transform() method using the same instance of the scaler. The
efficiency and stability of the models can be enhanced by
normalizing the numerical features, which is a crucial step
because many Machine Learning methods are sensitive to the
scale of the data.

Following that, the author constructs an empty dataframe called
"model performance" and imports much time-related,
performance-related metrics from the scikit-learn library. The
dataframe comprises seven columns, including "Accuracy,"
"Recall," "Precision," "F1-Score," "train time," "pred time,"
and "total time." The time-related functions from the Python
library were used to assess the time spent on training and
prediction of the model, and the imported performance metrics
from the scikit-learn library were used later to evaluate the
performance of a machine learning model. This dataframe was
used to store these measurements for later examination.

Random Forest
The author is making predictions on the test dataset while
training a Random Forest classifier in Python using the scikit-
learn library. It generates an instance of the class, imports the
RandomForestClassifier class from the library's ensemble
module, and then trains the model using the training dataset.
Using a time module also keeps track of the length of time spent
on training and prediction. After making the predictions, the
author made predictions on the test dataset using the trained
model's prediction approach. The Random Forest Classifier is
an ensemble method that uses averaging to increase predicted
accuracy and reduce over-fitting. It trains numerous decision
trees on different subsamples of the dataset. The summary data
for the Random Forest 100 prediction is presented in Figure 3.

On a test dataset, this algorithm assessed how well a Random
Forest classifier model performs. It computes several
performance metrics, including accuracy, recall, precision, and
f1-score, using the scikit-learn module. It also determines how
long training and prediction will take. Additionally, it prints the
times and performance indicators in a more readable manner.

The results are then saved in a dataframe for future study.
Figure 4 presents the model performance data (Random Forest
100).

On a test dataset, the author plotted a confusion matrix for a
Random Forest classifier model. A table called the confusion
matrix is used to describe how well a classification algorithm
performs. The matrix is generated using the scikit-learn
library's plot confusion matrix function, which takes the model,
test data, and true labels as inputs. The plot is displayed with a
white background and a chosen size of 5 x 5. Figure 5 presents
the Random Forest 100 Confusion Matrix.

The top 20 features of the Random Forest classifier model are
then plotted according to their importance using the scikit-learn
package, and the plot was displayed in a 10 x 10-inch format
with a white background. Additionally, it removed the top and
right spines from the plot and flipped the y-axis such that the
most significant feature was at the top.

24

Figure 7: Predictions (Random Forest 50)

Figure 8: Model Perfromance (Random Forest 50)

Figure 9: Confusion Matrix(Random Forest 50)

Figure 10: Predictions (Random Forest 150)

Figure 11: Model Performance (Random Forest 150)

Figure 12: Confusion Matrix (Random Forest 150)

Figure 13: SVM (Kernel - rbf, gamma - scale) Predictions

Figure 14: SVM (Kernel - rbf, gamma - scale) Model Performance

Figure 6 presents the top 20 features of Random Forest for 100
estimators.

The author used the above concepts for Random Forest
(Estimators = 50) and Random Forest (Estimators = 150) and
got the following results. Figure 7 presents the prediction for
Random Forest 50.

Further, figure 8 presents the performance of the model for
Random Forest 50.

Figure 9 presents the Confusion Matrix for the Random Forest
50.

As presented in Figure 10, the Model Prediction for Radom
Forest 150 is available.

Further, figure 11 presents the model performance for Random
Forest 150.

According to Figure 12, the Confusion Matrix for Random
Forest 150 was presented.
SVM
After calculating results using the Random Forest algorithm,
the author tried to apply these logics to the SVM algorithm.

The scikit-learn library was used by the author to train and test
a Support Vector Machine (SVM) classification model. The
kernel = 'rbf' and gamma ='scale', which were parameters of the
RBF kernel, were used to fit the model to the training data. This
generated an instance of the SVM class. On the test dataset, it
used the trained model to generate predictions. It also kept track
of how long training and prediction take. The cell's execution
time was also gauged. The gamma parameter was
automatically scaled by 1 / (n_features * X.var()), where n
_features were the total number of features and X.var() was the
variance of the training dataset, using the 'rbf' kernel and
gamma ='scale' in the code. Figure 13 presents the SVM
predictions for (Kernal – rbf, gamma – scale).

Then, using accuracy, recall, precision, F1-score, time for
training, time for prediction, and total time, the author assessed
the SVM model's performance on the test dataset and recorded
the findings in a dataframe for later use. The model's
performance is then recorded in a dataframe for future use, and
the assessment metrics and time measurements are written out
in a human-readable format. The SVM model performance for
(Kernal – rbf, gamma – scale) was presented in Figure 14.

25

Figure 15: Confusion Matrix for SVM (Kernel - rbf, gamma -
scale)

Figure 16: SVM (Kernel - sigmoid, gamma - scale) Predictions

Figure 18: Confusion Matrix for SVM (Kernel - sigmoid,
gamma - scale)

Figure 17: SVM method performance for
(Kernel - sigmoid, gamma - scale)

Figure 19: SVM (Kernel - poly, gamma - scale) Predictions

Figure 20: SVM method performance for
(Kernel - poly, gamma - scale)

Figure 21: Confusion Matrix for SVM (Kernel - poly, gamma
- scale)

The predictions provided by the SVM model on the test dataset
are then plotted as a confusion matrix by the author. The model,
"X test," and "y test" were used as input arguments for the "plot
confusion matrix" function, which creates the confusion
matrix. The figurine has a 5.5-inch height and a blue color
scheme. The 'plt.show()' function was used to show the plot. It
was used to visually assess the model's performance and
determine which class the model successfully predicted and
which class it incorrectly forecasted. Figure 15 presents the
Confusion Matrix for SVM (Kernel - rbf, gamma - scale).

After that, the author used the above concepts to SVM (Kernel
- sigmoid, gamma – scale) and SVM (Kernel - poly, gamma -
scale). The following results were obtained from the study.

The SVM prediction for (Kernel - sigmoid, gamma - -scale)
was presented in Figure 16.

The SVM method performance for (Kernel - sigmoid, gamma
- -scale) was presented in Figure 17.

Further, the Confusion Matrix for SVM (Kernel- - sigmoid,
gamma - scale) was presented in Figure 18.

The SVM prediction for (Kernel - poly, gamma - -scale) was
presented in Figure 19.

The SVM method performance for (Kernel - poly, gamma - -
scale) was presented in Figure 20.

Further, the Confusion Matrix for SVM (Kernel - poly, gamma
- -scale) was presented in Figure 21.

ANN - MLP
The Multilayer Perceptron (MLP) is a Feedforward Neural
Network (FNN). The MLP is trained using scikit-

26

Figure 22: ANN - MLP Predictions

Figure 23: ANN - MLP Method Performance

Figure 24: ANN - MLP Confusion Matrix

Figure 25: Predictions for Hybrid Model

Figure 26: Method Performance - Hybrid
Model

MLPClassifier learn on a dataset ('X train', 'y train') with certain
hyperparameters defined, and the learned model is then used to
make predictions on another dataset ('X test'). Additionally, it
measured how long it takes to train the model and generate
predictions using Python's time library. In conclusion, the
author tested and trained an MLP classifier. As in Figure 22,
the ANN – MLP prediction was captured.

The performance of a trained MLP model was assessed by the
following. In this research study, the author used a variety of
evaluation metrics, including accuracy, recall, precision, and
F1-score. These evaluation metrics were then printed along
with the time that it took to train the model, make predictions,
and evaluate the performance overall. All evaluation metrics
and time were then saved in a dataframe for comparison at a
later time. It is a summary of the model's performance. The
ANN – MLP method performance is presented in Figure 23.

Next, the author used the scikit-learn library's 'plot confusion
matrix' function to create and present a confusion matrix for the
trained MLP model on the test dataset. Figure 24 presents the
Confusion Matrix for ANN – MLP.

**Although this study used the ANN – MLP model for
analyzing purposes. To build the hybrid model, the research
team did not use the ANN-MLP model.

Hybrid Model
The hybrid model was created by combining the Random
Forest Model and the SVM model. The Random Forest was

used to pre-process the data and to select the most relevant
features, followed by the SVM model to classify the data based
on the selected features.

 Random Forest Classifier with 150 estimators was
used as it yielded the best results in all Random Forest
models.

 SVM with poly kernel was used as it yielded the best
result among SVM models.

In this research study, a new model that combined the Random
Forest Classifier and SVM Classifier was trained. It began by
training a Random Forest Classifier with 150 estimators, then
used the trained Random Forest model to select the most crucial
features from the training data. It set a threshold of "median,"
which meant that features that were not crucial enough were
eliminated from the dataset. The 'X train important' variable
was used to keep the training data after it had been modified to
include only the most crucial attributes. The test data, which
was kept in the 'X test important' variable, went through the
same procedure. The important features from the
X_train_important data were then used to train an SVM model
with a polynomial kernel. Then, using the X_test_important
data and the trained SVM model, it made predictions. It also
computed the accuracy, recall, precision, and F1-score of the
predictions using the y_test data and measured the time
required to train the model and make predictions. Figure 25
presents the predictions for the hybrid model.

The author evaluated the performance of a hybrid model that
combined the Random Forest model's feature selection method
with the Support Vector Machine's classification algorithm
(SVM). The most crucial characteristics were chosen from the
training set by the Random Forest model, and the SVM was
subsequently trained using this smaller feature set. The
accuracy, recall, precision, and F1-Score are then used to assess
the hybrid model's performance, and the time it took to train
and the forecast was also noted. For later comparison with
different models, the outcomes were then saved in the
"model_performance" dataframe with the label "Hybrid
(Estimators - 150, Kernel - poly, gamma - scale)". Figure 26
presents the method performance for the hybrid method.

27

Figure 27: Confusion Matrix for Hybrid Method

Then, using the 'SelectFromModel' feature selection technique,
the author generated a confusion matrix for the SVM model
that was fitted to the converted training data (X train important)
and the transformed test data (X test important). The "Seaborn
library's" "plot confusion matrix" method is used to display the
confusion matrix as a 5x5-inch figure with a white background
and a blue color map to represent it. By comparing the
predicted values to the actual values in the test set, this matrix
was used to assess the model's performance. Knowing how
many false positives, false negatives, true positives, and true
negatives the model produced is helpful. Figure 27 presents the
Confusion Matrix for the Hybrid Model.

Model Comparison
The author can anticipate seeing the performance measures
(such as accuracy, recall, precision, and F1-score) of each
model as well as their training and prediction timeframes from
the model comparison. With the aid of this data, the author can
compare the models and choose the one that offers the best
overall performance or the best performance/computational
efficiency trade-off. The confusion matrix for each model can
also be used by the author to gauge how well it predicts the
various classes. The overall model comparison is presented in
Table 5.

Table 5: Overall model comparison

index Accu

racy

Recal

l

Preci

sion

F1-

Score

train

_time

pred

_time

total

_time

Rando

m

Forest

(Estim

ators -

100)

0.977

59

0.977

59

0.977

67

0.977

60

7.744

32

0.191

59

7.935

9185

Rando

m

Forest

(Estim

0.976

68

0.976

68

0.976

78

0.976

69

4.004

90

0.096

96

4.101

8745

ators -

50)

Rando

m

Forest

(Estim

ators

= 150)

0.977

65

0.977

65

0.977

76

0.977

66

11.54

36

0.276

33

11.81

9950

SVM

(Kern

el -

rbf,

gamm

a -

scale)

0.950

20

0.950

20

0.951

27

0.950

29

94.21

05

17.34

44

111.5

5504

SVM

(Kern

el -

sigmoi

d,

gamm

a -

scale)

0.680

69

0.680

69

0.680

98

0.680

82

357.3

23

29.79

81

387.1

2117

SVM

(Kern

el -

poly,

gamm

a -

scale)

0.950

32

0.950

32

0.951

18

0.950

40

101.9

39

10.00

80

111.9

4741

MLP 0.967

99

0.967

99

0.968

04

0.968

00

112.1

30

0.047

86

112.1

7792

Hybri

d

(Estim

ators -

150,

Kernel

- poly,

gamm

a -

scale)

0.942

309

0.942

309

0.942

45

0.942

34

100.4

496

9.477

212

109.9

267

Performance Measures:

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has an accuracy of
94.2309%. This accuracy is lower than that of the Random
Forest algorithm with 100 estimators (97.7592%) and the
Random Forest algorithm with 50 and 150 estimators
(97.6681% and 97.7652%, respectively), but higher than that

28

Figure 28: Model Performance - Accuracy

Figure 29: Model Performance - Recall

Figure 30: Model Performance - Precision

of the SVM algorithm with sigmoid kernel and scale gamma
(68.0695%).

It could be argued that the specific combination of estimators
and kernel used in the hybrid model may not be optimal and
that a different combination may yield better performance.
Figure 28 presents a comparative bar chart for the Model
Performance under the accuracy.

Figure 29 presents the model performance comparison
according to the recall.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has a recall value of
94.2309%. This recall is lower than that of the Random Forest
algorithm with 100 estimators (97.7592%) and the Random
Forest algorithm with 50 and 150 estimators (97.6681% and
97.7652%, respectively). This suggests that the hybrid model
is not as good at detecting positive instances (i.e., it has a higher
number of false negatives) compared to the Random Forest
algorithm with 100 estimators and the Random Forest
algorithm with 50 and 150 estimators.

Figure 30 presents the model performance comparison
according to the precision.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, had a precision value of
94.2459%. This precision was lower than that of the Random
Forest algorithm with 100 estimators (97.7678%) and the
Random Forest algorithm with 50 and 150 estimators
(97.6780% and 97.7765%, respectively). This suggested that
the hybrid model was not as good at detecting correct positive

29

Figure 31: Model Performance - F1 Score

Figure 32: Model Comparison - train_time

instances (i.e., it has a higher number of false positives)
compared to the Random Forest algorithm with 100 estimators
and the Random Forest algorithm with 50 and 150 estimators.

Figure 31 presents the model performance comparison
according to the F1 Score.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has an F1-score of
94.2344%. This is slightly lower than the Random Forest
algorithm with 100 estimators, but higher than the SVM
algorithm with sigmoid kernel and scale gamma. This
suggested that the hybrid model had a good balance of
precision and recall, but not as good as the Random Forest
algorithm with 100 estimators. It's also important to note that
the F1-score was a measure that seeks a balance between
precision and recall, so a higher F1-score means a better
balance of precision and recall. In this case, it can be observed
that the Hybrid model is not the best in terms of F1-score but
it's still quite good.

Time Frames:

The Hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has a train time of 65.38
seconds. This train time was slower than the Random Forest
algorithm with 100 estimators, but faster than the SVM
algorithm with sigmoid kernel and scale gamma. This
suggested that the Hybrid model had a relatively moderate train
time compared to other models. However, it's important to
consider the trade-off between train time and model
performance. As we can see the Hybrid model had a good
performance in terms of F1-score, the additional train time may
be worth it if the performance gain was deemed significant for
the specific application or domain.

Figure 32 presents the model comparison according to the
train_time.

Figure 33 presents the model performance comparison
according to the pred_time.

30

Figure 33: Model Comparison -pred_time
Figure 34: Model Performance - Total Time

The Hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, had a prediction time of
6.31 seconds. This prediction time was slower than the Random
Forest algorithm with 100 estimators and 50 estimators, but
faster than the SVM algorithm with rbf kernel and sigmoid
kernel with scale gamma. This suggests that the Hybrid model
has a relatively moderate prediction time compared to other
models. However, it's important to consider the trade-off
between prediction time and model performance. As we can see
the Hybrid model had a good performance in terms of F1-score,
the additional prediction time may be worth it if the
performance gain was deemed significant for the specific
application or domain.

Figure 34 presents the model comparison according to the total
time.

From the given output, it can be seen that the 'Hybrid
(Estimators - 150, Kernel - poly, gamma - scale)' model has a
total time of 71.691509 seconds, which was slower than most
of the other models, particularly when compared to the Random
Forest models and the MLP model. This suggested that the
hybrid model may not be as computationally efficient as some
of the other models in terms of the total time taken.

Class imbalance problem
The dataset's class imbalance problem poses a serious problem
that affects the accuracy of the findings when it comes to
anomaly detection in cloud network data. When the proportion
of normal behavior to anomalous behavior is noticeably
greater, an imbalance arises. This imbalance might, in practice,
result in a model that performs well in predicting instances of
the majority class (normal examples) but poorly in detecting
cases of the minority class (anomalies). A model with great
precision but low recall is one of the possible outcomes, which

31

could lead to a system that fails to recognize real security
threats and ignores vulnerabilities.

Looking ahead, resolving the issue of class imbalance becomes
essential for subsequent studies. Investigating other balancing
strategies, including oversampling, undersampling, or
sophisticated approaches like the Synthetic Minority Over-
sampling Technique (SMOTE), is one possible direction. The
purpose of these methods is to lessen the effect of class
imbalance on model performance. A more resilient anomaly
detection system may also benefit from the application of
ensemble methods and the creation of more sophisticated
hybrid models, particularly when those models are specifically
made to manage unbalanced datasets. To gain a deeper
comprehension of hybrid model performance in real-world
scenarios, future research should expand evaluations to a wider
range of real-world datasets.

V. CONCLUSION & RECOMMENDATIONS
A. Discussion
The main objective of this research was to introduce a novel
hybrid model for detecting anomalies in cloud network data
and to compare its performance to other machine learning
models. The study used the UNSW-NB15 anomaly dataset for
the experiments and preprocessed and selected features for the
training and testing sets. The model training was done using
Random Forest and SVM algorithms, and a novel hybrid model
was built with Hybrid RF(Estimators - 150) and SVM(Kernel -
poly, gamma - scale) due to their higher accuracy and other
aspects.

The results showed that the novel hybrid model performed
somewhat poorly compared to the Random Forest models that
were used alone, but the total time for the hybrid model was
deemed acceptable. This was the first time that a hybrid model
was used for the UNSW_NB15 dataset. The limitation of the
study was the class imbalance problem in the dataset.

The results of this study contributed to the understanding of
how different algorithmic combinations affect the performance
of a hybrid model in detecting anomalies in cloud network data.
The study also highlights the importance of feature selection
and pre-processing techniques in improving the performance of
a model. However, the study also highlighted the need for
further research to address the class imbalance problem in the
dataset.

One possible explanation for the poor performance of the
hybrid model could be the combination of the two models.
SVM and Random Forest used different approaches to solve
classification problems, and combining them may not have
resulted in an optimal solution. Another possible explanation
could be the choice of parameters for the SVM, such as the
kernel and gamma, which may not have been the best suited for
the specific dataset used in this research.

Based on the information provided, the contribution of the
study can be summarized as follows:

 Novel Hybrid Model: The study proposed a new
hybrid model to detect anomalies in cloud network
data. The model was built using two selected
algorithms, SVM and Random Forest, and is
compared to single-algorithm models to evaluate its
performance.

 Algorithmic Combinations: The study investigated

the impact of different algorithmic combinations on
the performance of the hybrid model. This analysis
provides insights into the effectiveness of various
machine learning algorithms in detecting anomalies in
cloud network data.

 Data Handling: The study also explored how well the

hybrid model handles various types of data and how
various feature selection and pre-processing
techniques can affect its performance.

 Research Pathways: The study discusses potential

future research pathways for the application of hybrid
models in anomaly detection and cloud network
security. It also highlights the importance of
understanding the hybrid model and its security
implications.

 Performance Evaluation: The study evaluates the

hybrid model in terms of its computational resources,
false positives, and false negatives, which can provide
practical insights into its usefulness in real-world
applications.

Overall, the study contributed to the field of anomaly detection
and cloud network security by proposing a new hybrid model
and evaluating its performance against other machine learning
algorithms. It also provided insights into the impact of different
algorithmic combinations, data handling techniques, and
potential research pathways.

B. Practical implication of the hybrid model
Particularly in the area of anomaly detection in cloud network
data, the hybrid model in this study has important real-world
applications. The model provides a sophisticated approach to
addressing the intricacies and nuances inherent in cloud
network security by combining the benefits of Random Forest
(RF) and Support Vector Machine (SVM). The robustness of
the system is improved when managing cloud network
anomalies because of its capacity to create precise decision
limits with the help of SVM and to capture complex
relationships within data, which is made possible by RF's
ensemble learning. Put practically, this means that cloud

32

settings will be able to recognize odd patterns or possible
security concerns with greater precision.

C. Conclusion and Recommendations
This research aimed to introduce a novel hybrid model for
detecting anomalies in cloud network data and to compare its
performance to other machine learning models. The study used
the UNSW-NB15 anomaly dataset and preprocessed and
selected features for the training and testing sets. The results
showed that the novel hybrid model performed somewhat
poorly compared to the Random Forest models that were used
alone, but the total time for the hybrid model was deemed
acceptable. The study also highlighted the need for further
research to address the class imbalance problem in the dataset.
Overall, the study contributed to the understanding of how
different algorithmic combinations affect the performance of a
hybrid model in detecting anomalies in cloud network data and
the importance of feature selection and pre-processing
techniques in improving the performance of a model.

The practical implications of the findings suggest that hybrid
models can be used for anomaly detection in cloud network
data, but the performance may be impacted by the selection of
algorithms and the dataset used. The study also recommends
future research to address the class imbalance problem in the
dataset and to further investigate the potential of hybrid models
in anomaly detection and cloud network security. Additionally,
the study recommends future research to investigate the rate of
false positives and false negatives, computational resources,
and the ease of understanding of the hybrid model.

In conclusion, this research has shown that a hybrid model of
SVM and Random Forest can be used for anomaly
identification in cloud network data using the UNSW-NB15
dataset. However, the results suggested that the performance of
the hybrid model was not as good as the Random Forest models
alone. Further research is needed to optimize the parameters of
the SVM and Random Forest models to improve the
performance of the hybrid model. Despite the limitations, this
research provides valuable insights for future research in this
area.

ACKNOWLEDGMENT
The first author is thanking the supervisors of this research
study for their support.

FUNDING
Not applicable.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES

[1] A. Vervaet, “MONILOG: An Automated Log-based
ANOMALY DETECTION SYSTEM FOR CLOUD computing

infrastructures,” 2021 IEEE 37th International Conference on Data
Engineering (ICDE), 2021.

[2] Dingde Jiang, Yang Han, Xingwei Wang, Zhengzheng Xu,
Hongwei Xu, and Zhenhua Chen, "A time-frequency detecting method
for network traffic anomalies," International Conference on
Computational Problem-Solving, Li Jiang, China, 2010, pp. 94-97.

[3] B. Wang, Q. Hua, H. Zhang, X. Tan, Y. Nan, R. Chen, and X.
Shu, “Research on ANOMALY DETECTION and real-time
reliability evaluation with the log of cloud platform,” Alexandria
Engineering Journal, vol. 61, no. 9, pp. 7183–7193, 2022.

[4] S. H. Haji and S. Y. Ameen, “Attack and anomaly detection in
IOT networks using Machine Learning Techniques: A Review,” Asian
Journal of Research in Computer Science, pp. 30–46, 2021.

[5] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, "Machine
Learning for Anomaly Detection: A Systematic Review," in IEEE
Access, vol. 9, pp. 78658-78700, 2021, doi:
10.1109/ACCESS.2021.3083060.

[6] T. Sureda Riera, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-J.
Martínez Herraiz, and J.-A. Sicilia Montalvo, “Prevention and fighting
against web attacks through anomaly detection technology. A
systematic review,” Sustainability, vol. 12, no. 12, p. 4945, 2020.

[7] M. Ozkan-Okay, R. Samet, Ö. Aslan and D. Gupta, "A
Comprehensive Systematic Literature Review on Intrusion Detection
Systems," in IEEE Access, vol. 9, pp. 157727-157760, 2021, doi:
10.1109/ACCESS.2021.3129336.

[8] J. Svacina, J. Raffety, C. Woodahl, B. Stone, T. Cerny, M. Bures,
D. Shin, K. Frajtak, and P. Tisnovsky, “On vulnerability and Security
Log Analysis,” Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, 2020.

[9] T. L. Yasarathna and L. Munasinghe, "Anomaly detection in cloud
network data," 2020 International Research Conference on Smart
Computing and Systems Engineering (SCSE), Colombo, Sri Lanka,
2020, pp. 62-67, doi: 10.1109/SCSE49731.2020.9313014.

[10] T. Hagemann and K. Katsarou, “A systematic review on
anomaly detection for cloud computing environments,” 2020 3rd
Artificial Intelligence and Cloud Computing Conference, 2020.

[11] A. Alshammari and A. Aldribi, “Apply machine learning
techniques to detect malicious network traffic in cloud computing,”
Journal of Big Data, vol. 8, no. 1, 2021.

[12] S. Nedelkoski, J. Cardoso and O. Kao, "Anomaly Detection from
System Tracing Data Using Multimodal Deep Learning," 2019 IEEE
12th International Conference on Cloud Computing (CLOUD), Milan,
Italy, 2019, pp. 179-186, doi: 10.1109/CLOUD.2019.00038.

[13] M. S. Islam, W. Pourmajidi, L. Zhang, J. Steinbacher, T. Erwin
and A. Miranskyy, "Anomaly Detection in a Large-Scale Cloud
Platform," 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-
SEIP), Madrid, ES, 2021, pp. 150-159, doi: 10.1109/ICSE-
SEIP52600.2021.00024.

[14] F. J. Schmidt, “Anomaly detection in cloud computing
environments,” thesis.

[15] T. Salman, D. Bhamare, A. Erbad, R. Jain and M. Samaka,
"Machine Learning for Anomaly Detection and Categorization in

33

Multi-Cloud Environments," 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud), New York, NY,
USA, 2017, pp. 97-103, doi: 10.1109/CSCloud.2017.15.

[16] S. E. Hajjami, J. Malki, M. Berrada and B. Fourka, "Machine
Learning for anomaly detection. Performance study considering
anomaly distribution in an imbalanced dataset," 2020 5th International
Conference on Cloud Computing and Artificial Intelligence:
Technologies and Applications (CloudTech), Marrakesh, Morocco,
2020, pp. 1-8, doi: 10.1109/CloudTech49835.2020.9365887.

[17] X. Qiu, Y. Dai, P. Sun and X. Jin, "PHM Technology for
Memory Anomalies in Cloud Computing for IaaS," 2020 IEEE 20th
International Conference on Software Quality, Reliability and
Security (QRS), Macau, China, 2020, pp. 41-51, doi:
10.1109/QRS51102.2020.00018.

[18] A. Gerard, R. Latif, S. Latif, W. Iqbal, T. Saba and N. Gerard,
"MAD-Malicious Activity Detection Framework in Federated Cloud
Computing," 2020 13th International Conference on Developments in
eSystems Engineering (DeSE), Liverpool, United Kingdom, 2020, pp.
273-278, doi: 10.1109/DeSE51703.2020.9450728.

[19] J. Bogatinovski, S. Nedelkoski, J. Cardoso and O. Kao, "Self-
Supervised Anomaly Detection from Distributed Traces," 2020
IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), Leicester, UK, 2020, pp. 342-347, doi:
10.1109/UCC48980.2020.00054.

[20] W. Wang, X. Du, D. Shan, R. Qin and N. Wang, "Cloud
Intrusion Detection Method Based on Stacked Contractive Auto-
Encoder and Support Vector Machine," in IEEE Transactions on
Cloud Computing, vol. 10, no. 3, pp. 1634-1646, 1 July-Sept. 2022,
doi: 10.1109/TCC.2020.3001017.

[21] C. Raj, L. Khular and G. Raj, "Clustering Based Incident
Handling For Anomaly Detection in Cloud Infrastructures," 2020 10th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 2020, pp. 611-616, doi:
10.1109/Confluence47617.2020.9058314.

[22] Y. Yuan, H. Anu, W. Shi, B. Liang and B. Qin, "Learning-Based
Anomaly Cause Tracing with Synthetic Analysis of Logs from
Multiple Cloud Service Components," 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC),
Milwaukee, WI, USA, 2019, pp. 66-71, doi:
10.1109/COMPSAC.2019.00019.

[23] M. Thill, W. Konen and T. Bäck, "Online anomaly detection on
the webscope S5 dataset: A comparative study," 2017 Evolving and
Adaptive Intelligent Systems (EAIS), Ljubljana, Slovenia, 2017, pp.
1-8, doi: 10.1109/EAIS.2017.7954844.

[24] M. S. Islam and A. Miranskyy, "Anomaly Detection in Cloud
Components," 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), Beijing, China, 2020, pp. 1-3, doi:
10.1109/CLOUD49709.2020.00008.

[25] S. Eltanbouly, M. Bashendy, N. AlNaimi, Z. Chkirbene and A.
Erbad, "Machine Learning Techniques for Network Anomaly
Detection: A Survey," 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar,
2020, pp. 156-162, doi: 10.1109/ICIoT48696.2020.9089465.

[26] I. Aljamal, A. Tekeoğlu, K. Bekiroglu and S. Sengupta, "Hybrid
Intrusion Detection System Using Machine Learning Techniques in
Cloud Computing Environments," 2019 IEEE 17th International

Conference on Software Engineering Research, Management and
Applications (SERA), Honolulu, HI, USA, 2019, pp. 84-89, doi:
10.1109/SERA.2019.8886794.

[27] Kithulwatta, W.M.C.J.T., Wickramaarachchi, W.U., Jayasena,
K.P.N., Kumara, B.T.G.S., Rathnayaka, R.M.K.T. (2022). Adoption
of Docker Containers as an Infrastructure for Deploying Software
Applications: A Review. In: Saeed, F., Al-Hadhrami, T., Mohammed,
E., Al-Sarem, M. (eds) Advances on Smart and Soft Computing.
Advances in Intelligent Systems and Computing, vol 1399. Springer,
Singapore. https://doi.org/10.1007/978-981-16-5559-3_21

[28] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Docker incorporation is different from
other computer system infrastructures: A review," 2021 International
Research Conference on Smart Computing and Systems Engineering
(SCSE), Colombo, Sri Lanka, 2021, pp. 230-236, doi:
10.1109/SCSE53661.2021.9568323.

[29] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Docker Containerized Infrastructure
Orchestration with Portainer Container-native Approach," 2022 3rd
International Conference for Emerging Technology (INCET),
Belgaum, India, 2022, pp. 1-6, doi:
10.1109/INCET54531.2022.9825257.

[30] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Performance Evaluation of Docker-
based Apache and Nginx Web Server," 2022 3rd International
Conference for Emerging Technology (INCET), Belgaum, India,
2022, pp. 1-6, doi: 10.1109/INCET54531.2022.9824303.

[31] Kithulwatta, W.M.C.J.T., Jayasena, K.P.N., Kumara, B.T. and
Rathnayaka, R.M.K.T., 2022. Integration With Docker Container
Technologies for Distributed and Microservices Applications: A
State-of-the-Art Review. International Journal of Systems and
ServiceOriented Engineering (IJSSOE), 12(1), pp.1-22.

[32] Jayaweera, M.P.G.K., Kithulwatta, W.M.C.J.T. & Rathnayaka,
R.M.K.T. Detect anomalies in cloud platforms by using network data:
a review. Cluster Comput 26, 3279–3289 (2023).
https://doi.org/10.1007/s10586-023-04055-1

[33] Gayantha, M. H., Kithulwatta, W. M. C. J. T., & Rathnayaka, R.
M. K. T. (2022). The Interconnection of Internet of Things and
Artificial Intelligence: A Review. In Sri Lankan Journal of Applied
Sciences (Vol. 1, Issue 1).
https://sljoas.uwu.ac.lk/index.php/sljoas/article/view/45/12

[34] M.H. Gayantha, W.M.C.J.T. Kithulwatta, R.M.K.T. Rathnayaka.
Identification of a Machine Learning Architecture for Potato
DiseaseClassification Using Leaf Images. Applied Sciences
Undergraduate Research Symposium 2022 At: Sabaragamuwa
University of Sri Lanka. p. 15.

