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Abstract— Breast cancer is a leading cause of mortality 

among women worldwide. Temperature-based techniques 

have emerged as a promising approach for breast cancer 

detection and prediction. This literature review aims to 

comprehensively analyse the existing research on 

mathematical models developed to predict the temperature 

gradient between the surface and core of the female breast. 

Various mathematical models, including Penne’s bioheat 

transfer model, Wulff's model, Klinger's model, Chen and 

Holmes' model, and the porous media model, have been 

investigated. The strengths and limitations of each model, 

as well as their application in breast cancer risk prediction, 

have been examined. Additionally, the utilization of breast 

models, sensors, and validation techniques has been 

explored. The review highlights the need for further 

research to address the limitations of existing models and 

improve their accuracy in breast cancer diagnosis. The 

findings provide valuable insights for advancing 

temperature-based approaches and enhancing early 

detection strategies. 
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I. INTRODUCTION 

 

Breast cancer remains the most prevalent cancer among 

women worldwide, with a significant impact on public 

health and individual lives. According to recent statistics, 

an estimated 2.3 million new cases were diagnosed in 2020, 

resulting in 684,996 deaths (Chen et al., 2020). In Sri Lanka, 

the incidence of breast cancer has been rising rapidly over 

the past 15 years, with 4,447 cases identified in 2019 alone 

(Fernando et al., 2018; Strategic Information Management 

Unit, 2021). Early detection is crucial for improving 

treatment outcomes and reducing mortality rates associated 

with breast cancer (Moreno and Herrera, 2019). 

Breast cancer is a prevalent disease affecting women 

worldwide, with a significant number of new cases and 

deaths reported each year (Fernando et al., 2018; Strategic 

Information Management Unit, 2021). Early detection 

plays a crucial role in improving the success rate of cancer 

treatment (Moreno and Herrera, 2019). In recent years, 

temperature-based techniques have shown promise for 

breast cancer detection and prediction (Kimberger et al., 

2009; Rassiwala et al., 2014). Specifically, the temperature 

gradient between the surface and core of the breast has 

emerged as a valuable indicator for identifying abnormal 

tissue and potential malignancies (Lozano et al., 2020). 

This has led to the development of mathematical models 

aimed at predicting the temperature variations within the 

breast and assessing their implications for breast cancer 

diagnosis. 

The objective of this research paper is to provide a 

comprehensive literature review of the existing 

mathematical models that have been developed to predict 

the temperature gradient between the surface temperature 

and core temperature of the female breast. By examining 

the current state of knowledge in this field, we aim to 

identify the strengths, limitations, and opportunities for 

advancing temperature-based approaches for breast cancer 

diagnosis. 

By gaining a deeper understanding of the existing 

mathematical models and their applications in predicting 

temperature variations within the breast, we can contribute 

to the development of more accurate and effective methods 

for early breast cancer detection. This has the potential to 

significantly impact patient outcomes and improve the 

overall management of breast cancer. 

 

II. METHODOLOGY 

 

The methodology adopted for this literature review 

encompassed a meticulous and systematic search and 

analysis of existing research studies that focused on the 

development of mathematical models to predict the 

temperature gradient in the female breast. Extensive 

exploration was conducted across multiple reputable 

scientific databases, including PubMed, IEEE Xplore, and 

Google Scholar. A careful selection of search terms, such 

as "breast cancer," "temperature-based techniques," 

"mathematical models," "bioheat transfer," and "breast 

temperature," was employed to ensure a comprehensive 

coverage of the relevant literature. 

 

III.  BIOHEAT MODELS USED TO ESTIMATE INNER 

TEMPERATURE VARIATIONS OF THE BREAST  

 

Several bioheat models have been developed to predict the 

inner temperature of the breast and provide insights into 

tumour size and depth (Hristov, 2019). These models 

include Penne’s bioheat transfer model, Wulff's model, 
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Klinger's model, Chen and Holmes' model, and the porous 

media model.  

 

A. Penne’s bioheat transfer model. 

This is widely used in bioheat transfer research, accounts 

for heat transfer through conduction, convection, and 

metabolism. However, it assumes steady-state conditions 

and neglects transient effects. Penne’s equation is as 

follows.  

 

𝜌𝑡𝐶𝑡

𝜕𝑇𝑡(𝑟, 𝑡)

𝜕𝑡
=  

𝑘𝑡

𝑟

𝜕

𝜕𝑟
[𝑟

𝜕𝑇𝑡  (𝑟, 𝑡)

𝜕𝑟
] +  𝜔𝑏𝜌𝑏𝐶𝑏  

(𝑇𝑎0 − 𝑇𝑡(𝑟, 𝑡)) + 𝑄𝑚 

 

𝜌𝑡  - tissue density (kg/m^3) 

𝐶𝑡  - tissue specific heat capacity (J/(kg·K)) 

𝜕𝑇𝑡(𝑟,𝑡)

𝜕𝑡
 - partial derivative of tissue temperature Tt with 

respect to time t 

𝑘𝑡  - tissue thermal conductivity (W/(m·K)) 

𝑟 - radial coordinate (m) 

𝜕𝑇𝑡 (𝑟,𝑡)

𝜕𝑟
 - partial derivative of tissue temperature Tt with 

respect to the radial coordinate r 

𝜔𝑏  - blood perfusion rate (s-1) 

𝜌𝑏 - blood density (kg/m3) 

𝐶𝑏 - blood specific heat capacity (J/(kg·K)) 

𝑇𝑎0  - arterial blood temperature (K) 

𝑄𝑚 - metabolic heat generation [W/m3] 

 

B. Wulff’s model. 

This is a modification of Penne’s bioheat transfer model, 

incorporates metabolic heat generation within the tissue, 

providing a more accurate representation of heat generation 

in biological tissues. Similar to Penne’s model, it assumes 

steady-state conditions and does not consider transient 

effects. 

𝜌𝑏𝐶𝑝
𝜕𝑇𝑡 

𝜕𝑡
=  𝐾𝑡

𝜕2𝑇𝑡

𝜕𝑥2 −  𝜌𝑏𝑣ℎ  (𝑐𝑝
𝜕𝑇𝑏  

𝜕𝑥
− ∆𝐻𝑓

𝜕𝜀

𝜕𝑥
  ) 

∆𝐻𝑓 - the specific enthalpy of the metabolic reaction. 

𝜌𝑏𝑣ℎ - the local blood mass flux 

C. Klinger's model  

This is a extends Penne’s bioheat transfer model by 

incorporating blood perfusion heterogeneity within the 

tissue. By considering the spatial variation of blood 

perfusion rate, this model provides a more realistic 

representation of heat transfer within tissues. However, 

obtaining detailed knowledge of blood perfusion 

distribution may pose practical challenges. 

𝜌𝑡𝐶𝑡

𝜕𝑇𝑡  

𝜕𝑡
+  𝜌𝑏𝐶𝑏𝑉𝑏 . ∇𝑇𝑡  = 𝑘𝑡∇2𝑇 +  𝑄   

D. Chen and Holmes' model 

This is another modification of Penne’s bioheat transfer 

model, accounts for the temperature difference between 

arterial and venous blood to capture the convective heat 

exchange occurring in blood vessels. Although it improves 

the representation of heat transfer within the vasculature, it 

still assumes steady-state conditions and does not address 

transient effects. 

 

Chen and Holmes' model in solid tissue space. 

 

𝑑𝑉𝑠 [𝜌𝑠𝐶𝑠

𝜕𝑇𝑠  

𝜕𝑡
] = 𝑑𝑄𝑘𝑠 + 𝑑𝑄𝑏𝑠 + 𝑑𝑄𝑚 

Chen and Holmes' model in vascular space. 

𝑑𝑉𝑏 [𝜌𝑠𝐶𝑠

𝜕𝑇𝑏 

𝜕𝑡
] = 𝑑𝑄𝑘𝑏 − 𝑑𝑄𝑏𝑠 + ∫ (𝜌𝑏𝐶𝑏𝑇)𝑉𝑑𝑠

𝑆

 

 

E. Porous media model  

In this model it treats the tissue as a porous medium, 

allowing for the analysis of heat transfer through interstitial 

fluid and the solid matrix. It considers convective heat 

transfer within the fluid phase and conductive heat transfer 

within the solid phase. This model offers insights into heat 

transfer mechanisms in tissues with complex structures or 

heterogeneous properties. However, it may require 

additional assumptions and parameters to accurately 

describe the properties of the porous medium. 

Researchers have utilized these mathematical models to 

predict breast cancer risk and characteristics. The most 

widely used model is Penne’s bioheat transfer equation 

(Korczak et al., 2020; Paruch, 2020; Shrestha, Gurung and 

Gokul, 2021). In some cases, the Penne’s bioheat equation 

has been used in inverse methods to determine tumour size 

and location (Hatwar and Herman, 2017). Additionally, 

various calculus concepts such as Laplace transform, 

ordinary differential equations, and partial differential 

equations have been incorporated into the development of 

mathematical models to analyse the thermal characteristics 

of the breast (Paruch, 2020), (Dolat Khan et al., 2022), 

(Park and Yang, 2018). Some researchers have also 

employed the Stefan-Boltzmann equation to explore breast 

temperature characteristics (Souza et al., 2015). 

To model and validate these equations, researchers have 

developed breast models using tools such as COMSOL 

(Khomsi et al., 2020), (Chanmugam, Hatwar and Herman, 

2012), MATLAB, or finite element methods (Korczak et 

al., 2020). Physical models, such as an artificial breast 

model comprising gelatine and silicon layers, have been 

commonly employed to validate mathematical models 

(Elouerghi et al., 2022). Furthermore, porcine breast 

models (Donninger et al., 2015) and Gonzalez-Hernandez 

215



breast models (Lozano et al., 2020) have been utilized in 

some studies. Temperature data collection has been 

facilitated by the use of sensors, including bioheat sensors 

(Elouerghi et al., 2022) and microwave sensors, which 

have proven to be accurate for breast cancer prediction 

(Wang, 2018).  

 

Figure 1: A schematic representation of a control volume 

V in a tissue with parallel blood supply via arteries and 

veins relevant to porous media studies(Hristov, 2019). 

 

IV. PARTIAL DEFERENTIAL EQUATION THERMAL 

ANALYSIS ALGORITHM 

 

The study(Park and Yang, 2018) uses a two-dimensional 

PDE thermal analysis model to develop a temperature 

distribution model for simulated breast cancer. It tracks 

changes in position and size, utilizing heat passing through 

defects, and investigates variations in surface temperature 

due to defect shifts. This innovative methodology 

overcomes limitations of conventional animal testing. 

3D heat conduction is given by; 

 
𝜕

𝜕x
( 𝑘
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If k is a constant, then; 

(
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𝝏2T

𝜕z2
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k
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1

∝
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Getting rid of the z-axis and the energy generated 

internally and using q(= 0) to enable two-dimensional 

analysis in Equation (1) ; 

𝜕
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When converted to 2D;  

1

r
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𝜕r2
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1
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These boundary conditions were considered. 

-𝑘
𝜕T

𝜕x
 =  hf (Ts - Tf)  +  𝝈𝜺 (Ts

4- Tf
4) 

where hf denotes the surrounding heat convection 

coefficient, Ts the material surface temperature, Tf the 

surrounding air temperature, is the Stefan-Boltzmann 

constant, and is the material surface radiation constant. 

 

Figure 2: shows the thermal analysis model used in this 

study, where R1 represents the left and right coordinates 

of both endpoints of the test model, R2 represents the 

defect, and T1 and T2 represent the surrounding 

temperatures(Park and Yang, 2018). 

 

V. MODEL FORMULATION USING FINITE 

ELEMENT METHOD 

 

For numerical solutions, the finite element method is used 

in this study. The breast domain is divided into 862 

triangular finite elements. The SST region's epidermal, 

dermal, and subcutaneous layers are divided into 128, 

128, and 130 triangular finite elements, respectively. The 

glandular layer, tumor/cyst, and muscle with thoracic wall 

are each divided into 382 triangular finite 

elements.(Shrestha, Gurung and Gokul, 2021) 

 

Figure 3: represents a schematic diagram of element-wise 

two-dimensional discretization of breast tissue containing 

a tumor/cyst. The tumor/cyst has a diameter of 20 mm and 

a center coordinate of (35, 0) (Shrestha, Gurung and 

Gokul, 2021). 
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Breast with hemi-spherical shape has five layers: 

epidermis, dermis, subcutaneous tissue, glandular layer, 

and muscle with thoracic wall. The X-axis is the breast's 

central line. The breast portion is symmetrical about the 

central line. A tumor/cyst is assumed in the glandular 

layer at the central line of the breast in the study. This is 

because most breast tumors/cysts develop in the glandular 

layer's lobules and milk ducts, and glandular is a medical 

term for breast. 

 

VI. CONCLUSION  

 

In conclusion, this literature review has provided a 

comprehensive analysis of mathematical models developed 

for predicting the temperature gradient in the female breast. 

The reviewed models, including Penne’s bioheat transfer 

model, Wulff's model, Klinger's model, Chen and Holmes' 

model, porous media model, PDE thermal analysis 

algorithm, and the model formulation using finite element 

method offer valuable insights into heat transfer 

mechanisms and temperature variations within breast tissue. 

However, it is essential to address the limitations of these 

models, such as their assumptions and neglect of transient 

effects, to improve their accuracy in breast cancer diagnosis. 

Future research should focus on refining these models and 

incorporating more realistic representations of the 

physiological processes involved. Additionally, the 

utilization of advanced techniques, including enhanced 

breast models and sensor technologies, should be explored 

to enhance the prediction capabilities of these mathematical 

models.  

In essence, the synthesis of mathematical modelling, 

temperature-based techniques, and innovative 

methodologies holds significant potential for 

revolutionizing breast cancer diagnosis. As we advance our 

understanding of temperature variations within breast 

tissue, we pave the way for improved strategies in cancer 

detection, enhancing our ability to combat this widespread 

disease and transform patient outcomes. This research not 

only contributes to the scientific discourse surrounding 

breast cancer but also holds the promise of driving tangible 

progress in clinical practice and patient care. 
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