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Abstract:	 Unmanned	 Aerial	 Vehicles	 (UAVs),	
more	commonly	known	as	drones,	have	a	wide	

range	 of	 applications	 spread	 across	 various	

industries.	 Drones	 are	 plagued	 with	 several	

challenges	concerning	their	 limited	battery	life	

and	payload.	Until	researchers	come	up	with	a	

much	more	advanced	and	 long-lasting	battery	

solution,	 drones	 must	 use	 the	 most	 optimum	

path	 for	 delivery,	 which	 will	 increase	 battery	

efficiency	 and	 reduce	 overheads.	 This	 study	

analyses	 the	 battery	 energy	 consumption,	

velocity,	 and	 flight	 time	 of	 the	 quadcopter	 for	

varying	 payloads	 and	 develops	 a	 suitable	

mathematical	 relationship	 for	 path	 planning	

problem	 formulation.	 This	 paper	 proposes	 a	

Genetic	algorithm	 -based	path	optimization	 to	

obtain	 the	 most	 energy	 optimal	 path	 for	 the	

drone	 carrying	 a	 certain	 payload	 for	 a	 set	 of	

specified	destinations.	
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1. Introduction	

Despite	 its	 many	 advantages,	 a	 significant	
drawback	in	using	an	Unmanned	Aerial	Vehicle	
(UAV)	or	 a	 drone	 is	 its	 battery	 life	 limitation	
and	 payload.	 The	 limited	 power	 supply	
restricts	 the	 drone's	 flight	 duration.	
Researchers	 have	 invested	 a	 considerable	
effort	to	minimize	the	weight	of	the	rotorcrafts	
by	 adopting	 improvements.	 As	 payload	 is	 a	
crucial	 factor	 affecting	 the	 drone's	 flight	
duration,	 lack	 of	 sufficient	 battery	 power	
brings	 out	 a	 worse	 scenario	 of	 drone	
malfunction	 or	 drone	 crash	 before	 the	

completion	 of	 delivery.	 Until	 researchers	
develop	 a	 much	 more	 advanced	 long-lasting	
battery	solution,	research	on	optimizing	routes	
and	 battery	 consumption	 has	 become	 an	
exciting	area.	

Much	existing	literature	has	not	considered	the	
case	 of	 drone	 failure	 before	 it	 completes	 the	
journey	 due	 to	 the	 loss	 of	 battery	 power.	 As	
most	 researchers	used	commercially	available	
drones	for	their	research,	they	have	determined	
the	 energy	 consumption	 by	 considering	 the	
Battery	Consumption	Rate	 (BCR)	of	 the	drone	
(Yacef	 et	 al.,	 2017;	Torabbeigi	 et	 al.,	 2o2o).	 In	
contrast	 to	 these,	 this	 paper	 considers	 the	
battery	 power,	 energy	 consumption,	 and	
varying	payloads	to	formulate	the	optimization	
problem.		The	contributions	of	this	paper	are	as	
follows:			

	

i. An	 energy	model	 is	 derived	 from	 the	
power	consumption	and	the	flight	time	
of	 a	 LiPo	 battery	 used	 by	 a	 custom-
made	 drone	 for	 different	 payloads.	
Here,	 path	 is	 planned	 by	 considering	
payload	as	a	significant	factor	affecting	
the	drone's	energy	consumption.		

ii. A	Genetic	Algorithm	(GA)	approach	 is	
used	to	search	for	the	optimal	energy-
efficient	path.		

iii. The	 operation	 is	 visualized	 using	 a	
Python-based	simulation.	
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2. Literature	Review	

Many	 researchers	 presented	 several	
approaches	 to	 analysing	 the	 range	 and	
endurance	 of	 battery-powered	 quadrotors.		
Traub	 (2011)	 has	 examined	 and	 validated	
(Traub,	2013)	the	effect	of	battery	

discharge	 rate	 and	 the	 voltage	 drop	 on	 its	
adequate	 capacity.	 An	 experiment	 (Abdilla	 et	
al.,	2015)	to	validate	the	endurance	model	for	
LiPo	battery-powered	UAV	was	 conducted	 to	
characterize	 the	 consumption	 of	 power	 of	
rotorcrafts.	Kim	and	his	team	(2018)	proposed	
a	robust	method	to	find	the	most	optimal	flight	
schedule	 considering	 uncertain	 battery	
duration.	 Morbidi	 and	 his	 team	 (2016)	
addressed	UAVs'	 battery	power	 limitation	by	
determining	 the	 minimum	 energy	 paths	 by	
utilizing	the	electrical	model	of	a	BLDC	motor	
for	a	commercial	quadrotor.		

The	rising	issue	of	determining	energy-optimal	
paths	 for	 a	drone	 considering	 the	power	and	
payload	 has	 not	 received	 the	 related	
literature's	 required	 attention.	 Several	 path	
planning	 approaches	 have	 been	 studied	 by	
many	researchers	worldwide,	considering	the	
state-of-health	 of	 the	 battery	 (Schacht-
Rodríguez	 et	 al.,	 2018),	 the	 coverage	 and	
resolution	(Di	Franco	and	Buttazzo,	2015),	and	
wind	condition	(Yacef	et	al.,	2020).	The	paper	
presented	by	Torabbeigi	and	his	team	(2020)	
claims	that	the	payload	is	a	 linear	function	of	
the	 battery	 consumption	 rate	 using	 linear	
regression.	

Algorithms	 such	 as	 Greedy	 (Ahmed	 et	 al.,	
2016),	 Particle	 Swarm	 Optimisation	 (PSO)	
(Huang	et	al.,	2016),	Dijkstra	algorithm	(Bekhti	
et	 al.,	 2017),	 Bellman-Ford	 algorithm	 (Samar	
and	Kamal,	2012),	and	Genetic	Algorithm	(GA)	
(Shivgan	and	Don,	2020;	Bagherian	and	Alos,	
2015)	are	among	the	most	used	algorithms	for	
UAV	 path	 planning.	 When	 these	 researchers	
compared	 their	 results	 with	 different	
algorithms	 for	 the	 same	 conditions,	 GA	 has	
provided	a	more	accurate	solution.	According	
to	Bagherian	 and	Alos	 (2015),	GA	provides	 a	
much	better	solution	to	the	problem,	even	with	
more	calculations.	

3. Methodalogy	

C. Hardware	Setup	

The	 drone	 used	 in	 this	 experiment	 is	 an	 X-
shaped	 quadcopter.	 The	 Carbon	 fiber	 frame	
holds	 four	 Gemfan	 9047	 Carbon	 Nylon	
CW/CCW	propellers,	four	brushless	DC	motors,	
and	four	multirotor	brushless	electronic	speed	
controllers.	The	system	is	powered	by	a	three-
cell	 11.1V	 LiPo	 (5C)	 Battery.	 The	 flight	
controller	 used	 in	 the	 study	 is	 Radiolink	Mini	
Pix	 V1.0,	 which	 includes	 a	 processor,	
barometer,	 accelerometer,	 and	 compass.	 Fight	
control	 is	 achieved	 by	 the	 communication	
between	 the	 hand-held	 Transmitter	 (TX)	 and	
the	 receiver	 (RX)	 attached	 to	 the	 flight	
controller.	The	radio	transmitter	is	a	Flysky	FS	
i6X	model	joystick	controller,	and	the	receiver	
is	a	Flysky	FS	iA6B	2.4	GHz	6	channel	receiver.		

	

	

	

	

	

	

Figure	2.		Drone	used	in	this	experiment	

The	Ground	Control	Station	(GCS)	used	for	this	
study	 is	 the	 Mission	 Planner	 for	 Radiolink	
1.3.50,	 an	 open-source	 platform.	 The	 ground	
control	station	can	create	different	missions	via	
a	 flight	 plan.	 Once	 this	mission	 is	 loaded,	 the	
quadcopter	 flies	 according	 to	 the	 given	
commands	 autonomously.	 An	 image	 captured	
while	the	drone	was	on	air	is	shown	in	Fig.	1.	

	

D. Experimental	Data	Analysis	

Two	experiments	were	performed	to	obtain	the	
data	required	for	the	research	at	the	open-space	
playground	 of	 Sirindhorn	 International	
Institute	 of	 Technology,	 Thailand.	 Gathered	
data	 was	 used	 to	 study	 the	 relationship	 of	
battery	life,	flight	time,	and	velocity	to	an	added	
payload	to	the	drone's	existing	weight.				
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The	 first	 experiment	 was	 performed	 to	
understand	the	LiPo	battery's	behaviour	with	
the	 drone's	 flight	 time.	 The	 quadcopter's	
battery	 consumption	 was	 measured	 during	
hovering	 mode	 (or	 "altitude	 hold	 mode"	 in	
Mission	Planner).	As	there	is	a	translational	lift,	
the	power	consumption	is	relatively	higher	in	
hovering	mode.	Compared	to	hovering	mode	at	
the	 corresponding	 mass,	 vertical,	 and/or	
translational	 flight	 indicated	 the	 minimum	
difference,	leading	to	the	adoption	of	hovering	
as	 the	 nominal	 flight	 mode	 (Abdilla	 et	 al.,	
2015).	 The	 required	 experimental	 data	 was	
read	 from	 the	 flight	 data	 screen	 in	 Mission	
Planner	using	a	radio	connection	with	a	baud	
rate	of	57600.	

In	 the	 first	 experiment,	 the	 battery	 voltage,	
power,	 and	 current	 consumption	 were	
recorded	and	plotted	against	the	flight	time	for	
varying	 payloads.	 The	 experiment	 was	
conducted	 for	 a	 total	 weight	 ranging	 from	
1.174	kg	(net	weight	of	the	drone)	to	1.674	kg	
(maximum	weight	 the	 drone	 can	withstand).	
The	experiment	was	repeated	by	adding	50	g	
weight	 in	 each	 trial	 and	 aborted	 when	 the	
drone	cannot	take	off	any	further	or	is	hovering	
unstably.	A	 total	number	of	 eleven	 (11)	 tests	
were	performed.	

The	 LiPo	 cell	 used	 for	 the	 experiment	 has	 a	
nominal	voltage	of	3.7	V.	The	battery	has	three	
cells	in	series,	which	accounts	for	a	voltage	of	
11.1	V.	The	battery	was	discharged	 following	
the	80%	rule,	i.e.,	the	battery	should	never	be	
discharged	down	past	80%	of	its	full	capacity	
to	 prevent	 any	 damage.	 At	 80%	 charge,	 the	
LiPo	cell	provided	an	approximate	open-circuit	
voltage	 of	 3.73-3.75	 V.	 	 With	 this	 battery	
voltage,	 the	 maximum	 flight	 time	 without	 a	
payload	 for	 the	 drone	 was	 620	 s,	 and	 the	
maximum	flight	time	with	a	payload	of	500	g	
was	210	s.	 Low	battery	voltage	was	detected	
using	 a	 BX100	 battery	 voltage	 buzzer.	 By	
observing	 the	 R	 squared	 value	 of	 the	
regression	models,	 the	 following	 Eq.	 (1)	was	
obtained,	which	showed	that	there	 is	a	 linear	
relationship	(according	to	Eq.	(2))	between	the	
battery	voltage	(R_1)	and	the	flight	time	(F).	

	

R_1	=	-	0.0056t	+	12.172	 	 	 (1)	

The	above	equation	is	in	the	form	of		

	 	

R_1		=	α	t	+	β	 	 	 	 															
(2)	 	 	 	 	
	 			

where	α	is	the	slope	and	β	is	the	intercept.	

	

E. Experimental	Results	

Using	 the	data	 from	 the	 experiments,	 another	
analysis	was	performed	to	study	how	the	flight	
time	 varies	 with	 increasing	 load.	 Due	 to	 the	
drone's	additional	power	to	lift	the	payload,	the	
flight	 time	showed	a	reducing	pattern	with	an	
increasing	load	(w),	as	shown	in	Fig.	2.	

Figure	2.		Variation	of	maximum	flight	time	of	

the	drone	with	the	total	load	of	the	drone	

	

Here,	 the	 continuous	 line	 shows	 the	
experimental	 values	 while	 the	 dotted	 line	
represents	 the	best	 fit	 curve.	For	 the	plot,	 the	
logarithmic	fit	showed	the	best	R	squared	value	
of	0.8741.	Therefore,	it	was	concluded	that	the	
load	w	and	the	 flight	 time	F_49;	of	 the	drone	
have	 a	 logarithmic	 relationship	 shown	 by	 the	
Eq.	(3).		

	

F_49;=	 -146.1	 ln(w)+	 606.16																																
	 (3)	
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To	 obtain	 the	 data	 required	 to	 find	 the	
relationship	between	drone	velocity	(v),	power	
(p),	 and	 load	 (w),	 the	 UAV	 was	 flown	 in	 a	
straight	 line	with	 a	 constant	distance	of	50	m	
and	maintaining	an	altitude	of	10	m.	The	data	
was	gathered	for	payloads	varying	from	50	g	to	
500	 g.	 The	 constant	 distance	 and	 the	 flying	
altitude	 were	 set	 using	 the	 Mission	 Planner	
software.		

The	 results	 showed	 that	 the	 drone's	 velocity	
remained	at	 an	average	value	of	3.23	ms-1	 for	
every	different	weight	attached.	This	is	mainly	
due	to	the	electronic	speed	controller's	function	
connected	 to	 the	 drone	 that	 supplies	 the	
adequate	 instantaneous	 current	 to	maintain	 a	
constant	velocity.	The	following	graph	in	Fig.3	
shows	 the	 relationship	 between	 the	 load	 and	
the	drone	velocity.	

	

The	average	velocity	remained	unchanged	with	
varying	 loads.	 However,	 when	 considering	
power	 variation	 with	 flight	 time	 for	 all	 the	
weights	added,	it	was	observed	that	the	power	
consumption	 has	 increased	 with	 every	 added	
payload.	The	weight	limit	of	the	drone	depends	
on	the	thrust	produced	by	the	motors.	

	

The	 variation	 of	 power	 consumption	 with	
payload	is	given	by	the	Eq	(4).	

	

p	=	0.1288w	-	27.303				 	 	 														
(4)	

	

The	trendline	for	velocity	variation	is	given	by,	

	 	 	 	 	
	 	

v	=	0.0003w	+	2.794		 			 				
	 (5)	

	

	

	

Figure	3.		Variation	of	average	velocity	and	the	
average	power	with	a	varying	total	load	

	

In	 addition	 to	 this,	 the	maximum	distance	 for	
each	 flight	 was	 obtained	 by	 multiplying	 the	
corresponding	velocity	with	the	flight	time.		

F. Determining	the	Energy	Consumption	of	 the	
Drone	

As	energy	consumption	depends	on	the	drone	
speed,	 the	 energy	 consumption	 model	 must	
consider	 the	 different	 flight	 stages,	 including	
acceleration,	 deceleration,	 and	 hovering.	 The	
energy	 consumption	 at	 different	 speeds	 and	
distances	can	be	calculated	by	the	Eq.	(6).	

		

/_((1, S)	) = 	∫ _0^F1▒〖)_9		SF +
∫ _F1^F2▒〖)_1		SF + ∫ _F2^F3▒〖)_S		SF〗	
	 	(6)	

Here,		)_9	denotes	the	power	consumed	during	
acceleration,	 )_1	 denotes	 power	 consumed	
when	the	drone	is	flying	with	uniform	velocity	
v,	 )_S	 denotes	 the	 power	 consumed	 during	
deceleration,	 	 S	 is	 the	 distance	 traveled,	 and	
F1,	F2,	 and	 F3	 is	 the	 time	 duration	 of	 the	
acceleration	phase,	constant	speed	flight	phase,	
and	 deceleration	 phase,	 respectively.	 The	
particular	current	draw	and	the	battery	voltage	
data	were	obtained	 from	the	 first	experiment.	
The	 consumed	 power	 was	 then	 derived	 by	
multiplying	the	absorbed	current	by	the	supply	
voltage	 for	 each	 payload.	 The	 corresponding	
power	consumption	was	plotted	in	a	graph	for	
every	flight.		The	energy	consumed	by	the	total	
flight	 was	 calculated	 by	 obtaining	 the	 area	
under	the	curve,	according	to	Eq.	(7).	
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E_w = ∫ _(t = 0)^(t = T)▒P(t)dt		 	(7)	

	

In	 the	 Eq	 (7),	 Ew	 represents	 the	 energy	

consumed	 by	 a	 drone	with	 a	weight	w.	 Fig.	 4	
shows	 that	 the	 energy	 level	 has	 reduced	with	

added	 weights.	 This	 was	 considered	 as	 an	
energy	 loss.	 The	 energy	 consumption	 for	
different	loads	was	plotted	in	the	graph,	and	the	
best	 fit's	 eligibility	was	observed.	The	 fit	with	

the	R	squared	value	closest	to	

one	 (1)	 was	 selected	 as	 the	 most	 suitable	
energy	model	equation.	

	

Since	 there	were	 four	 types	of	 fits	with	an	R	
squared	 value	 of	 more	 than	 50%,	 cross-
validation	was	performed	to	check	which	fit	is	
more	likely	to	give	out	the	closest	value	to	the	
actual	 energy	 value.	 The	 average	 percentage	
error	for	linear	fit,	polynomial	fit	of	degree	1,	
polynomial	fit	of	degree	2,	and	polynomial	fit	
of	degree	3	was	46.8%,	2.14%,	19.63%,	26.3%,	
respectively.	As	 the	model	with	a	one-degree	
polynomial	 provided	 a	 closer	 value,	 it	 was	
selected	as	the	energy	model	of	the	problem.		

The	 energy	 model	 for	 the	 above	 analysis	 is	
given	by	Eq.	(8).	

	 	

/	 = 	^_1		G	 + 	^_2	 	 	 						
(8)	

Where	E	 is	 the	energy	consumption	 in	 Joules	
and	w	is	the	payload	in	Kilograms.	^1	and	^2	
are	 two	 coefficients	provided	as	 	〖	^〗_1		 =
	−5.306	;	104	and		^_2 = 	1.321	;	105.		

	

G. Path	planning		

The	 path	 planning	 approach	 in	 this	 research	
was	 conducted	 as	 a	 Travelling	 Salesman	
Problem	 (TSP)	 to	 minimize	 energy	

consumption.	Given	a	set	of	 random	cities	or	
locations	and	the	travel	cost	between	each	site,	
the	TSP	can	find	the	cheapest	route	to	visit	all	
the	 cities	 and	 return	 to	 the	 initial	 starting	
point.	A	Genetic	Algorithm	(GA)	approach	was	
used	 to	 evaluate	 the	 shortest	 path	 that	 the	
drone	 travel	 using	 optimized	 energy	 and	
distance	using	the	derived	energy	model.		

	

In	the	proposed	GA,	the	initial	population	is	the	
set	of	all	possible	traveling	routes	for	the	drone	
which	is	defined	by	user	input.	A	solution	or	a	
route	 is	characterised	by	a	set	of	parameters	
(genes)	which	links	together	to	form	a	solution	
(chromosome).	 	In	this	case,	the	fitness	value	
was	calculated	based	on	the	energy	consumed	
along	 the	path	drone	 takes.	 For	 selecting	 the	
parent,	 this	 research	 used	 the	 Elite	 selection	
method.	 As	 the	 objective	 is	 to	 minimize	 the	
energy	consumption,	the	parent	with	a	smaller	
fitness	value	used	in	GA	to	push	the	hypothesis	
towards	an	optimal	solution.	The	swapping	is	
selected,	 which	 corresponds	 to	 the	 higher	
energy	 efficient	 path.	 New	 offspring	 are	
created	 by	 applying	 a	 crossover	 operator	 to	
the	parents.	

	

	

	

 

Figure 4.  Energy consumption of the drone with varying load 
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Figure	5.		Pseudocode	for	the	simulation	
program	

New	 offspring	 are	 created	 by	 applying	 a	
crossover	 operator	 to	 the	 parents.	 The	 two-
point	crossover	method	was	used	in	our	study.	
This	 method	 uses	 two	 points	 randomly	
selected,	and	these	points	are	applied	to	a	pair	
of	chromosomes	

	The	two-point	crossover	method	was	used	in	
our	 study.	 This	 method	 uses	 two	 points	
randomly	 selected,	 and	 these	 points	 are	
applied	 to	a	pair	of	 chromosomes.	Mutations	
aremechanism	was	used	 for	mutation,	which	
selects	 two	 or	 more	 random	 genes	 from	 a	
chromosome	 to	be	swapped.	The	mechanism	
selects	 two	 random	 positions	 on	 the	
chromosome	and	interchange	the	values.	The	

termination	process	determines	when	the	GA	
process	ends.	Every	iteration	in	the	GA	process	
brings	 out	 a	 better	 solution,	 but	 the	
progression	 starts	 to	 saturate	 when	 the	
improvements	 are	 minimal.	 The	 process	 is	
terminated	when	the	solution	becomes	closer	
to	the	optimal.	

The	 path	 planning	 process	 was	 simulated	
using	Python	3.7	V	based	genetic	library	[17].	
The	 computer	 used	 for	 this	 consisted	 of	 an	
Intel®	 Core™	 i5-6200U	 CPU	with	 a	 speed	 of	
2.40	GHz.	The	system	used	a	64-bit	Windows	
operating	 system	 with	 an	 x64	 -based	
processor.	The	pseudocode	for	the	program	is	
provided	in	the	Fig	5.		

The	first	generation,	also	known	as	the	initial	
population,	 generates	 several	 paths	 possible.	
This	 number	 (population	 size)	 is	 defined	 by	
the	user	 in	popul_size,	which	 is	 the	 set	 of	 all	
possible	paths	a	drone	can	follow.	The	genetic	
algorithm	 process	 starts	 at	 this	 point.	 	 The	
initial	 population	 and	 selection	 algorithm	 is	
described	 in	 a	 class	 called	 GeneticAlgorithm.	
The	 primary	 role	 calls	 it	 for	 the	 GA	 process,	
which	 is	 initiated	 by	 the	 run	 function.	 The	
initial	 population	 is	 then	 sorted	 according	 to	
the	fitness	value	in	ascending	order.		

	

4. Results	

	

	

1 : Input: No of waypoints, Weight of the drone, Population size, 
velocity 
2 : P = -128.8w-27.30 
3 : E = P * (d/v) 
4 : Initialize population 
5 : function evaluate_function 
6 : for i =1: n do 
7 : for j=1: n do 

8 :  dij= ()*! − *",
# + ).! − .",

# 
9 :        end for 
10: end for 
11: return E, dij 
12: end function 
13: while iteration < num_Iter do 
14: for p=1:popul_size do   
15:  for K=1:chrom_size do 
16:   N(p,k),e(p,k) = evaluate 
function 
17:   D=D+d(p,k) 
18:   E=E+e(p,k) 
19:  end for 
20: Total D(P) =D 
21: Total E(P)=E 
22: end for 
23: if iteration > num_Iter then 
24: break 
25: else  
26: repeat total energy calculation using cross over and 
mutation 
27: end if 
28: for P=10: 10: popul_size do 
29: Use Elite selection to find parents 
30: Apply crossover to find new solution 
31: save in temp_pop 
32: for k=1: size(temp_pop) do 
33:  select previously separated solution 
from temp_pop  
34:  apply swapping mutation 
35:  if solution is feasible then  
36:   save it in new_pop 
37:  end if 
38: end for  
39: update solution in pop 
40: end for 
41: maximum_energy=-53063.39459*(w/1000) + 132107.63396 
42: if drone_energy<maximum energy 
43:  Print maximum_energy, total energy, total distance, 
drone energy, maximum_energy-drone_energy 
44: else print maximum energy is not enough to complete path 
45: end if 
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Figure	6.		Simulation	results	for	50	waypoints	
with	different	iterations	for	1374	g	

	

The	fitness	value	is	generated	by	obtaining	the	
sum	of	the		

total	 energy	 (E(P))	 consumed	 by	 the	 drone	
when	 it	 is	moving	 from	one	point	 to	another	
for	all	the	points	and	the	total	distance	(D(P)).		
Then	 the	 selection	 process	 is	 done	 using	 the	
elite	 selection	 model.	 The	 selection	 model	
sorts	the	initial	population	into	sets	of	10,	and	
the	 set	with	 the	best	 fitness	 is	 considered	as	
the	 new	 population.	 This	 new	 population	 is	
returned	 to	 the	 GA	 function.	 This	 set	 is	
subjected	 to	 mutation	 and	 crossover	 and	
calculates	the	fitness	value	again.	This	cycle	is	
repeated	until	the	best	solution	is	obtained.			

	

Results	 for	 path	 planning	 simulation	 were	
tested	 on	 several	 conditions.	 Tests	 were	
conducted	 for	 50	 waypoints,	 20	 waypoints,	
and	10	waypoints	to	observe	the	fitness	value	
behaviour.	 	 The	 distance	 coordinates	 were	
chosen	to	be	in	the	range	of	0	m	to	40	m,	and	
the	 experiment	 was	 repeated	 for	 three	
selected	weights	(1174	g,	1374	g,	1424	g,	and	
1674	g).	For	each	drone	weight,	five	tests	were	
conducted	 by	 changing	 the	 number	 of	
iterations.		

The	 maximum	 energy	 calculated	 by	 the	
program	for	each	given	weight	was	close	to	the	
energy	values	for	the	tested	payloads	obtained	
using	the	Eq.	(8).	The	results	also	showed	the	
amount	 of	 energy	 consumed	 by	 the	 drone	
battery	 and	 the	 remaining	 energy.	 A	 sample	
simulation	results	for	drone	carrying	a	load	of	
1374	g	with	50	waypoints	with	3000	iterations	
is	shown	in	Fig.	6.	

Test	simulations	were	conducted	with	a	load	of	
1374	g	for	10,20	and	50	waypoints	to	observe	

the	iteration	at	which	the	fitness	value	reaches	
a	minimum.	Results	are	shown	in	Table	1.		

Table	1:	Results	of	test	simulation	for	1374g.	

No.	 of	
waypoints	

Iteration	 at	 which	 the	 fitness	
value	reaches	minimum	

10	 60	

20	 100	

50	 3000	

	

For	50	waypoints,	as	1000	iterations	were	not	
enough	 to	 obtain	 an	 acceptable	 optimized	
solution,	the	no	of	iterations	were	increased	to	
3000.	 Then	 the	 fitness	 value	 started	 to	
stabilize	 at	 approximately	 2000th	 iteration.	
Therefore,	for	higher	number	of	waypoints,	it	
is	 required	 to	 increase	 the	 number	 of	
iterations,	 which	 increases	 the	 number	 of	
generations	 to	 obtain	 an	 accepted	 fitness	
value.		

The	 results	 in	 Table	 1	 were	 obtained	 only	
when	the	total	distance	travelled	by	the	drone	
along	 the	 path	 generated	 is	 less	 than	 the	
maximum	distance	 that	 the	 drone	 can	 travel	
with	 the	 available	 battery	 capacity.	 If	 the	
generated	 total	 distance	 is	 more	 than	 the	
drone's	travel	capacity,	a	message	is	displayed	
to	 show	 that	 the	 drone	 cannot	 cross	 the	
generated	path.		

	

5. Future	Work	

	As	 an	 extension	 of	 this	 work,	 a	 real-time	
rescheduling	 based	 on	 real-time	 battery	
capacity	 reduction	 can	 be	 studied.	 An	
alternative	 flight	 path	 can	 be	 developed	 to	
minimize	 the	 unmet	 demand	 in	 a	 scenario	
where	 the	 remaining	 battery	 capacity	 falls	
below	 a	 threshold	 value	 due	 to	 temperature	
changes.	As	the	drone's	battery	 life	 is	 limited	
to	approximately	10	minutes,	new	approaches	
such	 as	 battery	 swapping	 or	 autonomous	
battery	recharging	can	be	utilized	at	different	
depots	on	the	map.	These	can	be	accounted	to	
the	 path	 planning	 problem	 formulation	 for	 a	
much	 more	 realistic	 scenario.	 Furthermore,	
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this	 research	 can	 be	 conducted	 for	 higher	
loads	 to	 derive	 standard	 model	 for	 higher	
weight	range.		

6. Conclusion	

Since	 long-lasting	batteries	 for	UAVs	are	 still	
under	research,	this	project	has	developed	an	
optimized	flight	routing	algorithm	considering	
the	 available	battery	 energy	 and	 the	payload	
the	drone	can	carry.	Initially,	data	analysis	on	
battery	consumption,	velocity,	and	flight	time	
with	the	payload	was	conducted	on	a	custom-
made	 drone.	 The	 relationship	 between	 each	
parameter	 was	 developed,	 and	 an	 energy	
model	 was	 created.	 Using	 the	 developed	
energy	 model	 and	 relationships	 generated	
from	 the	 data	 analysis,	 the	 path	 planning	
algorithm	 was	 formulated	 and	 optimized.	
Then	 using	 a	 GA	 approach,	 the	 problem	was	
simulated.	 The	 results	 obtained	 provided	 an	
energy-efficient	 path	 plan	 for	 each	 payload	
carried	 by	 the	 drone	 around	 a	 set	 of	 user-
defined	 locations.	 This	 approach	 can	 be	
utilized	 for	 drones	 deployed	 in	 various	
industrial	and	domestic	applications.			
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