
 142	

Predicting	the	Freezing	of	Gait	in	Parkinson’s	patients	based	on	
Machine	Learning	and	Wearable	Sensors:	A	review	

MDVAG	Jayawardena1#,	PPCR	Karunasekara1	and	YVND	Sirisena2	

1Department	of	Electrical,	Electronic	and	Telecommunication	Engineering,	Faculty	of	Engineering,	

General	Sir	John	Kotelawala	Defence	University,	Ratmalana,	Sri	Lanka.	
2North	Central	Teaching	Hospital,	Ragama,	Sri	Lanka	

#varsha.anarkali@gmail.com	

Abstract:	 Freezing	of	Gait	 (FoG)	 is	a	 common	
incapacitating	 complication	 in	 Parkinson’s	

patients,	 which	 will	 temporarily	 hinder	 the	

forward	progression	and	will	prevent	them	from	

re-initiating	their	normal	gait.	This	can	lead	to	

potentially	 fatal	 falls	 and	 severely	 affect	 the	

quality	 of	 life	 of	 the	 patient.	 Due	 to	

characteristic	changes	in	their	gait,	FoG	can	be	

identified	 by	 using	 wearable	 sensors	 such	 as	

pressure	 sensors,	 Inertial	 Measurement	 Units	

(IMU),	 and	 Electroencephalogram	 (EEG)	

electrodes.	 Classification	 models	 that	 run	 on	

machine	 learning	 algorithms	 have	 been	

frequently	 used.	 Prediction	 of	 FoG	 would	 be	

highly	useful	for	the	patients	since	this	identifies	

the	 changes	 in	 their	 gait	 preceding	 the	 event	

and	the	patient	can	be	notified.	This	will	allow	

them	to	overcome	FoG.	This	 systematic	 review	

identifies	 the	 best	 sensors,	 sensor	 placements,	

predictive	algorithms,	and	the	limitations	of	the	

existing	 prediction	 systems.	 Out	 of	 all	 the	

methods	 reviewed,	 combinations	 of	 plantar	

pressure	sensors	placed	on	the	insoles	and	IMUs	

placed	 on	 the	 shank	 produced	 the	 highest	

accuracies	with	a	specificity	of	91.6%.	The	best	

algorithm	 was	 identified	 as	 Convolutional	

Neural	Networks.		
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1. Introduction		

Freezing	 of	 Gait	 (FoG)	 is	 identified	 as	 a	
common	 debilitating	 neurological	
complication	 in	 patients	 with	 Parkinson’s	
Disease	 (PD),	 where	 they	 are	 temporarily	
unable	 to	 continue	 the	 progression	 of	 their	
normal	 gait,	 due	 to	 being	 fixated	 in	 a	 single	
position	 (Shalin	 et	 al.,	 2020a)	 (Mazilu	 et	 al.,	

2015).	 Despite	 the	 patients’	 efforts,	 their	
motion	becomes	hindered,	and	 their	 feet	will	
appear	 to	 be	 “magnetized”	 or	 “glued”	 to	 the	
surface	 and	 are	 unable	 to	 re-initiate	 the	
normal	 gait.	This	 is	 also	 termed	 “Paroxysmal	
Akinesia”	(Chen	et	al.,	2021).	The	quality	of	life	
of	 20-80%	 of	 Parkinson’s	 patients	 will	 be	
hindered	due	to	the	Freezing	of	Gait	(Parakkal	
Unni	et	al.,	2020a).		

It	 has	 been	 observed	 in	 a	 study	 containing	
6629	 PD	 patients	 that	 47%	 of	 the	 sample	
exhibited	 symptoms	 of	 FoG	 frequently	 and	
28%	 of	 the	 population	 exhibited	 these	
symptoms	daily	(Mazilu	et	al.,	2015).	2	out	of	3	
of	 the	 late-stage	 PD	 patients	 will	 experience	
FoG	(Handojoseno	et	al.,	2014).	The	severity	of	
this	condition	lies	with	the	falls	resulting	from	
this.	This	is	because	the	patient	will	attempt	to	
move	 forwards	 by	 “unfreezing”	 themselves,	
and	 the	 inability	 to	 do	 so	 will	 fixate	 them	
despite	 their	 efforts.	 Their	 upper	 body	
momentum	 will	 propel	 them	 forwards,	
resulting	in	a	potentially	dangerous	fall,	which	
could	 even	 lead	 to	 the	 death	 of	 the	 patient.	
60%	 of	 the	 patients	 diagnosed	 with	 PD	 will	
experience	falls	caused	by	the	FoG.	(Chen	et	al.,	
2021).	No	cure	has	yet	been	identified	to	treat	
the	 FoG.	 Pharmaceutical	 therapy	 such	 as	
Dopamine	and	Leva-Dopa	and	treatments	such	
as	Deep	Brain	 Stimulation	 (DBS)	will	 help	 to	
alleviate	 the	 symptoms	 (Huang	 et	 al.,	 2018).	
Nonetheless,	 chemical-based	 therapies	 and	
DBS	does	not	work	 for	all	patients	and	some	
patients	 will	 develop	 a	 resistance	 to	 these	
treatments.	 This	 emphasizes	 the	 need	 for	
drug-free	 therapy	 (Mazilu	 et	 al.,	 2015)	
(Naghavi	and	Wade,	2019a)	
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Apart	from	an	individual’s	physical	well-being,	
their	 psychological	 well-being	 can	 also	 be	
affected	 by	 the	 FoG.	 The	 patient	will	 have	 to	
live	 their	 life	 with	 a	 constant	 fear	 of	 falling,	
which	will	further	impede	their	mobility.	This	
will	 lead	 to	 a	 characteristic	 change	 in	 their	
gaits,	such	as	trembling	of	the	feet	and	making	
shuffling	 steps,	 and	 a	 reduction	 in	 the	 step	
length.	Due	to	the	patient’s	hesitancy	to	move,	
they	 will	 experience	 secondary	 health	
problems	 such	 as	 osteoporosis	 and	
constipation	 (Prasad	 et	 al.,	 2018).	 Mental	
health	 problems	 such	 as	 anxiety	 could	 also	
arise	 due	 to	 FoG.	 The	 patients	 will	 also	 be	
highly	 dependent	 on	 assistance	 when	
performing	 their	 day-to-day	 activities,	 thus,	
will	lose	their	sense	of	independence	(Reches	
et	al.,	2020).	This	will	not	only	be	inconvenient	
to	 the	 patient	 but	 will	 be	 a	 burden	 for	 the	
caretakers	as	well.	The	reluctance	to	move	out	
of	their	retreat	will	result	in	reduced	amounts	
of	 social	 interactions,	 which	 could	 lead	 to	
potential	 social	 isolation,	 and	 thereby	
depression.	This	highlights	the	severity	of	FoG	
and	 the	 need	 for	 this	 issue	 to	 be	 addressed	
(Mazilu	et	al.,	2015).	

Detection	 of	 FoG	 can	 be	 beneficial	 to	 the	
patients	since	this	will	help	them	overcome	the	
event	 and	 re-initiate	 their	 normal	 gait.	
Abnormal	changes	in	the	gait	will	be	detected	
to	 identify	 events	 of	 FoG.	 After	 the	 event	 is	
detected,	 FoG	 episodes	 can	 be	 overcome	 by	
either	changing	the	original	path	of	motion,	by	
auditory	 stimulations	 such	 as	 humming	 or	
using	metronomes,	 or	 by	making	 high	 steps.	
Current	 clinical	modes	 of	 detection	 are	 done	
using	 video-recorded	 data	 of	 their	 gait	 and	
performing	 an	 offline	 analysis	 process.	 This	
will	not	be	highly	beneficial	to	the	patient	since	
they	 cannot	 be	 monitored	 continuously.	
(Rahman	 et	 al.,	 2008)	 (Tips	 to	 Overcome	
“Freezing”	|	ParkinsonsDisease.net,	2017).	

Increasingly	engineering-based	solutions	such	
as	 using	 wearable	 sensors	 are	 used	 for	 the	
detection	of	FoG.	EEG	(Electroencephalogram)	
and	EMG	(Electromyography)	electrodes,	skin	
conductance	 sensors,	 pressure	 sensors,	 and	
Inertial	 Measurement	 Units	 are	 commonly	

used	since	they	can	be	easily	and	comfortably	
worn	by	the	patient	for	a	long	period,	enabling	
continuous	 patient	 monitoring.	 They	 are	
better	than	motion	capture	systems	since	they	
work	 in	 real-time	 and	 are	 easy	 to	 set	 up.	 To	
identify	 and	analyze	 the	 swift	 changes	 in	 the	
Gait	 characteristics	 during	 FoG,	 machine	
learning	 algorithms	 such	 as	 Support	 Vector	
Machines,	 Neural	 Networks,	 and	 Decision	
Trees	 have	 been	 developed	 (Pardoel,	 2021a)	
(Aich	et	al.,	2018a)	(Palmerini	et	al.,	2017a).	

Prior	 to	 the	occurrence	of	FoG,	a	progressive	
deterioration	 of	 the	 spatial-temporal	 gait	
patterns	of	individuals	is	observed	(Borzì	et	al.,	
2021).	 This	 enables	 early	 detection	 or	
prediction	of	this	event.	Predictive	systems	are	
more	 desirable	 than	 detection	 systems	 since	
they	 identify	FoG	a	time	window	ahead	of	 its	
occurrence,	 thereby	 addressing	 the	 latency	
issue	 associated	 with	 detection	 systems.	
Detection	of	the	event	will	not	allow	sufficient	
time	for	the	patient	to	respond	and	overcome	
FoG.	 Individuals	 can	 independently	 identify	
FoG	 events	 during	 their	 medication	 “OFF”	
stage,	so	 the	use	of	detection	systems	will	be	
limited.	 Prediction	 systems	 paired	 with	 pre-
emptive	 cueing	 will	 notify	 the	 patient	 well	
ahead	of	the	event.	The	predictive	systems	will	
use	gait	characteristics	during	a	time	window	
ahead	 of	 the	 event,	 known	 as	 “Pre-FoG”,	 for	
analysis.	Together	with	the	FoG	and	Non-FoG	
gait	characteristics,	Pre-FoG	data	will	be	used	
in	 the	 identification	 of	 characteristic	 motor	
changes	in	PD	patients	before	the	Freezing	of	
Gait	 (Mazilu	 et	 al.,	 2015)	 (Pardoel,	 2021a).	
Thus,	 the	 analysis	 and	 development	 of	 FoG	
predictive	systems	would	be	highly	beneficial	
to	 PD	 patients.	 Therefore,	 the	 aim	 of	 this	
literature	review	is	to	explore	and	analyze	the	
methods	 of	 predicting	 FoG.	 This	 review	 will	
focus	on	 the	existing	FoG	predictive	 systems,	
that	 use	 wearable	 sensor	 hardware	 systems	
and	 predictive	 software	 developed	 based	 on	
machine	learning	algorithms.		An	analysis	will	
also	be	done	on	the	accuracy	and	feasibility	of	
the	systems	developed.		
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2. Methodology	

This	 review	 takes	 a	 systematic	 approach	 to	
analyze	the	existing	literature.	(Wright,	2007)	
(Aromataris	and	Pearson,	2014).	The	scope	of	
the	 review	 was	 initially	 identified	 as	 the	
existing	predictive	technologies	of	Freezing	of	
Gait	 in	 Parkinson’s	 patients,	 that	 followed	
engineering-based	 approaches.	 	 The	 area	 of	
interest	 was	 studied	 by	 exploring	 peer-
reviewed	articles	and	scientific	journals	based	
on	 this	 topic.	 The	 databases	 Google	 Scholar,	
Science	 Direct,	 PubMed,	 and	 Research	 Gate	
were	 used	 to	 obtain	 the	 relevant	 literature.	
The	keywords	used	for	this	quest,	along	with	
their	synonyms,	were	recorded	as	“Freezing	of	
Gait”,	 “Parkinson’s	 Disease”,	 “Machine	
learning”,	“Prediction”,	“Detection”,	“Wearable	
sensors”,	 and	 “Predictive	 algorithms”.	 Using	
Boolean	operators	such	as	“And”	and	“Or”,	the	
keywords	 were	 combined	 to	 scale	 down	 the	
search	results.	This	yielded	combinations	such	
as	“Prediction	of	Freezing	of	Gait	and	Machine	
learning”,	“Detection	or	Prediction	of	Freezing	
of	Gait”,	“Prediction	algorithms	and	Freezing	of	
Gait”,	 “Parkinson’s	 disease	 and	 Machine	
learning”	and	“Wearable	sensors	and	Freezing	
of	Gait”.		

The	 search	 results	were	 refined	 by	 scanning	
the	 titles	 and	 the	 abstracts	 of	 the	 research	
articles	 and	 the	 latest	 and	 the	most	 relevant	
literature	 was	 given	 priority.	 The	 duplicate	
articles	were	discarded.	Following	the	process	
of	 screening,	 the	 literature	 was	 completely	
examined	 to	 identify	 those	 that	 used	 only	
wearable	 sensors	 and	 machine	 learning.	 To	
refine	 the	 eligible	 articles,	 9	 characteristics	
were	observed:	the	number	of	patients	used	in	
the	 experiment,	 their	 age	 ranges,	 the	 freeze-
inducing	activities	performed,	types	of	sensors	
used,	the	sensor	placements,	number	of	trials	
for	 each	 activity,	 features	 extracted,	 the	
algorithms	used	 for	 the	classification	process	
and	the	results	obtained.	A	table	was	compiled	
consisting	of	the	references	for	each	article	and	
the	 criteria	 observed	 (Table	 1).	 Finally,	 the	
data	obtained	were	used	to	develop	a	critical	
analysis	of	the	literature	that	was	reviewed.		

	

Table	1.		Summary	of	the	literature.		

Referen
ce	

No.	 of	
patien
ts	

Age	 Activiti
es		

Sensor,	
Algorith
ms,	
Results	

(Chen	 et	
al.,	
2021)	

24	 males-	
62.827	
±	8.82,	

Female
s-	

69.20	±	
5.89	

gait	
initiatio
n,	 360-	
and	
180-
degree	
turns	
and	
walking	
through	
crowde
d	 halls	
and	
narrow	
corrido
rs	

IMU	
sensor,	
Random	
forest	
algorithm
,	 Hit	 rate	
of	68%	

(Shalin	
et	 al.,	
2020)	

5		 67-80	
years	

walking	
in	 a	
freeze-
inducin
g	 path,	
90/180	
degree	
turns	

plantar	
pressure	
sensors,	
CNN	
classifier,	
Sensitivit
y-	 82.3%,	
Specificit
y-	94.2%	

(Mazilu	
et	 al.,	
2015)	

11	 68.9	 ±	
10.2	

180	and	
360-
degree	
turns,	
walking	
on	 a	
straight	
line	and	
through	
narrow	
corrido
rs	

9	IMUs,	IR	
sensors,	
ECG	 and	
SCR	
electrode
s,	 patient-
specific	
cross-
validation
,	 71.3%	
predictio
n	
accuracy	

((Borzì	
et	 al.,	
2021)	

11	 73	±	7	 7m	
Timed	
Up	 and	
Go	 Test	
(TUG)	

2	 IMUs,	
Decision	
Trees	 and	
Support	
Vector	
Machines,	
sensitivit
y-84.1%,	
specificity
-85.9%			

Source:	Author	
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3. Results	

256	research	articles	were	obtained	from	the	
initial	 search	 from	 all	 the	 databases	
collectively.	The	screening	process	yielded	21	
articles	 on	 prediction	 and	 50	 articles	 on	 the	
detection	of	FoG.	Only	22	articles	that	satisfied	
the	eligibility	criteria	were	used	to	compile	the	
review.	 5	 review	 articles	 and	 2	 theses	 were	
used	in	the	review	process	as	well.	Only	the	key	
findings	 for	 the	 4	 articles,	 with	 the	 highest	
number	of	citations,	were	presented	in	Table	1,	
due	 to	 space	 constraints.	 The	 following	
sections	 will	 present	 the	 results	 of	 the	
literature	review.			

A.	Sensor	types	and	Placements		

Table	2	summarizes	the	types	of	sensors	used,	
parameters	 measured,	 the	 common	 sensor	
placements,	 and	 the	 highest	 reported	
prediction	 accuracy	 when	 for	 different	
sensors.	

Table	2.		Summary	of	the	types	of	sensors	used	

Sensor	 Param
eter	

Place
ments	

Accu
racy	
(%)	

References	

Inertial	
Measure
ment	
Units	
(IMU)-
Accelero
meters,	
Gyrosco
pes,	
Magneto
meters	

Acceler
ation,	
angular	
motion,	
fluctua
tions	of	
the	
magnet
ic	field	

Shin,	
shank,	
thigh,	
lower	
back,	
ankles,	
above	
the	
knee,	
hip	

85.5	 (Mazilu	 et	
al.,	 no	 date	
b)	 (Chen	 et	
al.,	 2021)	
(Borzì	et	al.,	
2021)	
(Shalin,	
2021)	
(Naghavi	
and	 Wade,	
2019b)	
(Assam	 and	
Seidl,	
2014)(Aich	
et	 al.,	
2018b)	
(Palmerini	
et	 al.,	
2017b)(Par
doel	 et	 al.,	
2021)(Yuan	
and	
Chakrabort
y,	 2020)	
(Pardoel,	
2021b)	

Pressure	
sensors	

Pressu
re	

Planta
r	
pressu
re	
sensor
s	
placed	
as	 an	
insole	
in	
shoes	

92.0	 (Shalin	 et	
al.,	 2021)	
(Pardoel	 et	
al.,	2021)	

Force	
plate	

Ground	
reactio
n	force	

Beneat
h	 the	
feet	

Not	
provi
ded	

(Parakkal	
Unni	 et	 al.,	
2020b)	

EEG	
electrod
es	

Electric
al	
activity
-brain	

Motor	
contro
l	
region
s-
Brain	

72	 (Naghavi,	
Miller	 and	
Wade,	
2019b)(Ha
ndojoseno	
et	 al.,	
2018b)	

ECG	
electrod
es	

Electric
al	
activity	
-heart	

Chest	 71.3	 (Mazilu	 et	
al.,	2015)	

Skin	
conducta
nce	
sensors	

Electric
al	
conduc
tance-
skin	

Index	
and	
middle	
fingers
,	wrist	

71.3	 (Mazilu	 et	
al.,	2015)	

Source:	Author	

Some	 of	 the	 commonly	 used	 sensors	 are	
displayed	in	Figure	1.	

	

Figure	1.		Types	of	sensors	used	

Sources:	A)	A	pressure	sensor	insole	B)	2	IMUs	
worn	 as	 bands	 on	 the	 shank	 (Shalin	 et	 al.,	
2020a)	 C)	 An	 ECG	 electrode	 placed	 on	 the	
chest	and	a	Skin	conductance	electrode	worn	
on	the	wrist	(Mazilu	et	al.,	2015)	
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Figure	2	depicts	some	of	 the	common	sensor	
locations.			

	

Figure	2.		Sensor	placements	

Sources:	A)EEG	electrodes	placed	on	the	motor	
regions	of	the	brain	(Handojoseno	et	al.,	2014)	
B)	Accelerometers	placed	on	the	shank	(Aich	et	
al.,	2018a)	C)	An	 IMU	worn	as	a	band	on	 the	
waist	 (Weiss	 et	 al.,	 2013)	 D)	 3	 pressure	
sensors	placed	in	an	insole	(Prado	et	al.,	2020)	

C.	Feature	Extraction	

Features	 are	 measurable	 quantitative	 data	
extracted	from	the	manipulation	of	raw	sensor	
data.	Some	of	the	commonly	used	time	domain	
features	are	Mean,	Standard	deviation,	angular	
velocity,	angular	jerk,	and	foot	velocity	(Mazilu	
et	al.,	2015)	(Pardoel,	2021a)	(Handojoseno	et	
al.,	2013b)	(Naghavi,	Miller	and	Wade,	2019a)	
(Borzì	et	al.,	2021)	(Shalin	et	al.,	2020a).	Some	
of	 the	 commonly	 used	 frequency	 domain	
features	are	spectral	density	and	the	power	of	
the	 signal	 obtained	 from	 Fourier	 Transform	
and	 Approximation	 and	 Detail	 Coefficients	
obtained	 from	 Wavelet	 Transform	 (Pardoel,	
2021a)	 (Naghavi	 and	 Wade,	 2019a)	
(Handojoseno	 et	 al.,	 2013a)	 (Mazilu	 et	 al.,	
2015)		(Borzì	et	al.,	2021).		

D.	Algorithms	

Implementations	 of	 the	 commonly	 used	
algorithms	are	done	through:	

1)	 Supervised	 pattern	 classification:	 Uses	
labeled	 data	 to	 develop	 the	 classification	
model	 and	 categorizes	 the	 data	 into	 training	
and	 testing	 groups.	 Labeled	 training	 data	 is	
used	 to	 develop	 the	 classification	model	 and	

unlabelled	testing	data	is	used	to	validate	the	
model	(Mazilu	et	al.,	2015)	(Borzì	et	al.,	2021).	

2)	 Unsupervised	 pattern	 classification:	 Yields	
better	 results	 for	 prediction	 rather	 than	 the	
supervised	models.	Uses	unlabelled	data,	thus	
this	 will	 eliminate	 the	 subjective	 biases.	 The	
model	itself	will	perform	the	labeling	process	
and	 cluster	 the	 data	 into	 freezing	 and	 non-
freezing	groups	(Mazilu	et	al.,	2015)	(Borzì	et	
al.,	2021).	

3)	 Semi-supervised	 pattern	 classification:	 This	
is	 a	 composite	 of	 the	 supervised	 and	
unsupervised	models,	so	uses	the	advantages	
of	 both	 methods.	 A	 major	 portion	 of	 the	
unlabelled	 data	 and	 a	 minor	 portion	 of	 the	
labeled	data	is	used	for	the	development	of	this	
classifier.	 This	 eliminated	 the	 need	 for	
laborious	 labeling	 processes	 and	 allows	 the	
development	 of	 generalized	 and	 subject-
specific	 models	 too.	 The	 highest	 reported	
sensitivity	and	specificity	using	 this	 classifier	
were	95.9%	and	95.6%	respectively	(Mazilu	et	
al.,	2015)	(Borzì	et	al.,	2021).	

A	few	of	the	commonly	used	algorithms	are:	

1)	 Neural	 Networks:	 Convolutional	 Neural	
networks	 allow	 independent	 identification	of	
spatial	patterns	and	are	favorable	since	feature	
extraction	is	not	a	necessity	for	this	algorithm.	
They	develop	images	using	the	data	and	work	
on	 pattern	 recognition	 principles.	 Minor	
disadvantages	of	this	model	are	its	complexity	
and	 time	 consumption.	 Sensitivities	 and	
specificities	 of	 98.8%	 and	 95.1%	 have	 been	
reported	 using	 this	 algorithm	 (Shalin	 et	 al.,	
2021)	(Pardoel,	2021a).	

2)	Decision	Trees:	The	observed	studies	used	a	
binary	classification	tree	method.	This	method	
prevents	 overfitting	 of	 the	 data	 and	 exhibits	
greater	 transparency	 in	 comparison	with	 the	
other	 algorithms.	 Compares	 the	 data	 with	 a	
threshold	 and	 categorizes	 it	 along	 the	nodes.	
Uses	 boosting	 techniques	 such	 as	 Logistic,	
Adaptive,	and	Robust	boosting	to	enhance	the	
performance.	 Can	 produce	 sensitivities	 and	
specificities	 of	 83.8%	 and	 82.1%	 (Pardoel,	
2021a).	



 147	

3)	 Support	 Vector	 Machines:	 Based	 on	
principles	of	binary	or	multiclass	classification	
and	 classifies	 the	 data	 by	 constructing	 a	
hyperplane.	 The	 planes	 and	 the	 classes	 are	
given	 the	 maximum	 disparity	 and	 new	 data	
points	 are	 classified	based	on	 their	 positions	
on	the	plane.	Can	yield	sensitivities	as	high	as	
89.2%	 (Pardoel,	 2021a)	 (Borzì	 et	 al.,	 2021)	
(Naghavi	 and	Wade,	2019a)	 (Handojoseno	et	
al.,	2013b).	

4. Discussion		

The	findings	of	the	review	will	be	summarized,	
discussed,	 and	 analyzed	 in-depth	 in	 this	
section.	Prediction	of	FoG	 is	 identified	as	 the	
detection	of	FoG	during	a	period	preceding	its	
incidence	 and	 warning	 them	 using	 pre-
emptive	signaling.	Most	recent	studies	focused	
on	 prediction	 algorithms	 since	 they	 assist	
Parkinson’s	patients	in	overcoming	FoG	more	
effectively	 than	 detection	 systems.	 Thus,	 this	
review	 will	 mainly	 focus	 on	 the	 results	
obtained	pertaining	to	the	prediction	of	FoG.		

A.	Sensor	types	

The	variations	in	the	gait	of	a	PD	patient	will	
result	 in	 fluctuations	 in	 the	 kinetics	 and	 the	
kinematics	 during	 and	 prior	 to	 the	 event	
(Parakkal	 Unni	 et	 al.,	 2020a).	 	 These	 can	 be	
effectively	 captured	 by	 wearable	 sensors.	
Different	physiological	parameters	respond	to	
FoG	 in	different	ways,	 thus	different	 types	of	
sensors	 will	 capture	 different	 characteristics	
of	 FoG,	depending	on	 the	 type	of	data	 that	 it	
collects.	 	 Increasingly,	 multimodal	 sensors	
have	 been	 used	 for	 the	 detection	 and	
prediction	 of	 FoG,	 since	 all	 the	 variations	
cannot	be	captured	by	a	single	type	of	sensor.	
(Shalin	et	al.,	2020a).	This	also	maximizes	the	
chance	 of	 identifying	 the	 event,	 by	
compensating	 for	 the	 patient-specific	
differences.	Figure	1	and	Table	2	refer	 to	 the	
commonly	used	types	of	sensors.		

It	 is	 evident	 that	 IMUs	were	 the	most	widely	
used	sensors	and	pressure	sensors	yielded	the	
highest	 accuracy	 out	 of	 all	 the	 sensors	
reviewed.	 IMUs	 are	 lightweight	 and	 compact	
devices	that	could	be	easily	accessed	and	worn	
on	 the	 patient’s	 body,	 with	 minimal	

inconvenience.	 This	 makes	 IMUs	 preferable	
compared	to	the	other	wearable	sensors.	They	
are	 usually	 combinations	 of	 accelerometers,	
gyroscopes,	 and	 magnetometers.	
Accelerometer	 data	 were	 more	 commonly	
used	 in	 comparison	 with	 other	 IMU	 data.	
Pressure	 sensors	 are	 among	 those	 that	
emerged	 recently,	 and	 these	 sensors	 yielded	
the	highest	reported	prediction	accuracy.	They	
are	more	comfortable	to	be	worn	on	the	body	
and	 are	 less	 intrusive.	 All	 pressure	 sensors	
observed	 were	 used	 as	 plantar	 pressure	
sensors	 on	 the	 insole	 of	 the	 shoe.	 Thus,	
pressure	 sensors	 can	 capture	 data	 more	
conveniently	 from	 the	 patients,	 with	 greater	
accuracy.	Pairing	pressure	sensors	with	IMUs	
yielded	 the	 highest	 reported	 sensitivity	
(78.0%)	 and	 specificity	 (91.6%),	 in	
comparison	 with	 single	 sensors,	 and	
multimodal	sensors	produced	the	best	overall	
performance.	 (Shalin	 et	 al.,	 2021)	 (Pardoel,	
2021a).	 To	 analyze	 the	 use	 of	 other	 sensors	
like	 force	 plates,	 EEG	 electrodes,	 ECG	
electrodes,	 and	 skin	 conductance	 sensors,	
limited	literature	was	available.		

A. Sensor	Placements	
Several	 studies	 compared	 the	 best	 sensor	
placements	 for	 the	 IMUs,	 which	 produced	 a	
greater	prediction	accuracy	compared	to	EEG,	
ECG,	and	skin	conductance	electrodes.	Figure	2	
and	 Table	 3	 depict	 the	 common	 sensor	
placements.	 Wearable	 accelerometers	 that	
were	 sported	 on	 the	 shank	 and	 the	 thigh	
yielded	 the	 highest	 prediction	 rates,	 which	
were	95.7	and	96.7	respectively	(Naghavi	and	
Wade,	 2019a)	 (Assam	 and	 Seidl,	 2014).	
Sensors	which	were	worn	on	 the	waist	were	
unable	to	capture	a	 large	portion	of	FoG	data	
since	 it	 is	 distal	 from	 the	 lower	 body	 that	 is	
mostly	 affected	 by	 FoG.	 It	 was	 only	 able	 to	
capture	 5.1%	 of	 the	 FoG	 data.	 Out	 of	 all	 the	
sensor	positions	reviewed,	it	was	evident	that	
the	shank	was	the	optimal	sensor	location	due	
to	the	highest	prediction	accuracy	and	the	least	
patient	dependency.	Plantar	pressure	sensors	
were	 not	 used	 as	 single	 pressure	 units,	 but	
multiple	 sensors	were	 used	 to	 capture	 point	
pressure	 data.	 Most	 of	 the	 studies	 using	
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pressure	sensors	used	the	commercial	F-Scan	
sensing	 system,	 which	 had	 3.9	 sensors	 per	
cm2,	 and	 yielded	 sensitivities	 of	 82.1%	 and	
specificities	 of	 89.5%	 (Pardoel,	 2021a).	 One	
study	used	3	pressure	 sensors	 placed	 on	 the	
metatarsals,	 calcaneus,	 and	 phalanges.	 This	
yielded	a	mean	sensitivity	of	96%	and	a	mean	
specificity	of	99.6%	(Prado	et	al.,	2020).	Thus,	
individual	 pressure	 sensing	 cells	 can	 capture	
more	 accurate	 FoG	 data,	 in	 comparison	with	
the	commercial	F-Scan	system.		All	the	systems	
placed	sensors	on	the	left	and	right	regions	of	
the	 body,	 and	 no	 detectable	 differences	
between	the	data	recorded	from	the	2	regions	
were	identified	(Palmerini	et	al.,	2017a).		

C.	Feature	Extraction	

Features	that	exhibit	characteristic	differences	
in	the	gait	patterns	of	FoG,	Non-FoG,	and	Pre-
FoG	events	should	be	used	in	the	prediction	of	
FoG.	 Threshold-based	 detection	methods	 are	
less	complex,	so	they	can	be	processed	faster	
(Pardoel,	2021a).	This	allows	threshold-based	
classification	methods	 to	be	used	 in	 the	 real-
time	prediction	of	FoG.	 It	has	been	 identified	
that	 frequency	 domain	 data	 allows	 the	
mapping	 of	 minute	 changes	 in	 the	 Pre-FoG	
windows.	Time	domain	features	allow	distinct	
differences	 to	 be	 observed	 between	 the	 gait	
patterns.	 By	 performing	 a	 time-frequency	
analysis	 of	 the	 data,	 using	 the	 optimum	
number	of	parameters,	the	best	results	can	be	
obtained	 (Pardoel	 et	 al.,	 2019)	 (Shalin	 et	 al.,	
2020b).			

D.	Algorithms	

Predictive	 systems	 were	 mostly	 based	 on	 3	
class	 classification	 techniques,	 since	 the	 FoG,	
Non-FoG,	and	Pre-FoG	classes	have	to	be	taken	
into	 consideration.	 Subject-specific	 models	
yield	greater	prediction	accuracies	as	opposed	
to	models	 that	 are	 generalized	 for	 the	whole	
population.	However,	limited	data	is	available	
to	generate	models	specific	to	each	individual,	
therefore	 generalized	 models	 are	 more	
desirable.	All	 the	 studies	used	 for	 the	 review	
used	machine	 learning	models	 to	 classify	 the	
data	 and	 produce	 predictions.	 (Mazilu	 et	 al.,	
2015).	 The	 algorithms	 that	 yielded	 the	 best	

performances	 were	 identified	 as	
Convolutional	 Neural	 Networks,	 Adaptive	
Boosted	 Decision	 Trees,	 Support	 Vector	
Machines,	 and	 Random	 Forests	 (Pardoel,	
2021a).				

E.	Limitations	

Most	 of	 the	 existing	 predictive	 systems	 have	
not	focused	on	producing	real-time	results	and	
are	 based	 on	 offline	 processing	 techniques.	
Without	real-time	analysis,	feedback	cannot	be	
provided	 to	 the	 patient	with	 a	minimal	 time	
delay,	 thereby	 making	 the	 existing	 systems	
less	useful.	FoG	manifests	in	different	ways	for	
different	 PD	 patients,	 therefore	 generalized	
models	are	less	effective.	The	feasibility	of	the	
existing	systems	cannot	be	guaranteed	due	to	
patient-specific	 differences.	 This	 poses	 a	 risk	
of	 incorrect	 classification	 and	 classification	
metrics,	 thereby	 producing	 incorrect	
validations	for	the	model	(Pardoel	et	al.,	2019)	
(Palmerini	et	al.,	2017a).	

5. Conclusion	

review,	 the	 need	 for	 an	 accurate	 FoG	
prediction	 system	has	 been	 identified,	which	
was	to	address	the	latency	issues	posed	by	the	
detection	system.	This	will	be	more	useful	for	
the	patients	to	overcome	events	of	FoG.	Out	of	
the	 literature	 reviewed,	 the	 best	 wearable	
sensors	were	identified	as	multimodal	sensors	
that	used	Plantar	pressure	sensors	and	Inertial	
Measurement	Units,	with	the	sensitivities	and	
specificities	reported	as	78.0%	and	91.6%.	The	
optimal	 sensor	 placements	 for	 the	 IMU	were	
identified	 as	 the	 shank	 and	 for	 the	 plantar	
pressure	 sensors,	 the	 positions	 of	 calcaneus,	
metatarsals,	 and	 phalanges	 yielded	 a	 greater	
accuracy.	Classification	models	that	used	time-
frequency	 domain	 features	 were	 better	 than	
individual	time	or	frequency	domain	features	
since	they	combined	the	advantages	of	the	two	
domains.	The	best	classification	algorithm	out	
of	 the	commonly	used	ones	was	 identified	as	
the	 Convolutional	Neural	Networks,	with	 the	
highest	reported	sensitivity	of	98.8%.	A	degree	
of	 personalization	 could	 be	 added	 by	
incorporating	 semi-supervised	 classification	
techniques.	 Thus,	 a	 system	 based	 on	 plantar	
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pressure	 sensors	 and	 Inertial	 Measurement	
Units	would	open	a	promising	avenue	for	the	
prediction	of	Freezing	of	Gait.		
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