Date of publication July 31, 2022, date of current version Aug. 12, 2022.

SQL Injection Detection and Preventive
Approach for Web Applications

GJM Ariyathilakel '#, MHR Sandeepanie ? ,and PL Rupasinghe *

B

Centre for Defence Research and Development, Ministry of Defence, Sri Lanka, 2General Sir John Kotelawala Defence University, Sri Lanka,

3Sri Lanka Institute of Information Technology, Sri Lanka
1#awert1232003 @ gmail.com

ABSTRACT Presently, the most highly used method of global communication is web applications and used for long-distance

communication, online marketing, research and development, distance learning, e-banking and social media networks. Since web applications are
available for the global community with access for anyone, web applications confront numerous security issues, specifically due to web-based ¢ yber-
attacks. The SQL injection attack is the most prevailing web-based cyber-attacks globally, belonging to high-rank classifications. Because of the
increased number of global online services with a high rate, SQL injection attacks also are amplified r apidly. Most SQL injection attacks are
successful due to a lack of proper validation. However, a successful SQL injection attack highly interferes with databases’ integrity, availability,
and confidentiality. Therefore, there is a vital global requirement to overcome SQL injection attacks. Accordingly, there are three key objectives. The
first objective is to detect the SQL injection attacks affecting web servers. The second objective is to explore the preventive solution for SQL
injection attacks affecting the web servers. The third objective is to share the knowledge on SQL injection attacks with other researchers.
Towards overcoming predominant issues, a periodically and continuously running PHP-based programme, which can identify patterns of SQL
injection attacks recorded in PHP Apache log files and blocking the identified suspicious IP addresses, was designed as the adopted me thodology.
Statistics of total suspicious IP addresses and black listed IP addresses with their hitting counts and time were obtained while preventing access of
black listed IP addresses to the Apache webserver. The proposed solution facilitates continuous monitoring of suspicious activities while blocking

vulnerable hosts using its IP addresses automatically with securing web servers from the SQL injection attack.

INDEX TERMS:

I INTRODUCTION

The most highly used method of global communication
is web applications. Web applications are used glob-
ally for long-distance communication, online marketing,
health services, research and development, distance learn-
ing, e-banking and social media networks. Ever since the
web applications are accessible for the global community
with having access for anyone at any time, web applica-
tions have been confronted with numerous challenges com-
prising the security issues, precisely owing to web-based
cyber-attacks. Among various cyber-attacks, the Structured
Query Language (SQL) injection attack is the most prevail-
ing web-based cyber-attacks globally, belonging to high-
rank classifications. In view of that, the line of codes de-
scribe the basic SQL injection attack as follows: The state-
ment = "select * from customers where name = ’” + cus-

999,99

tomerName + ’;

Above mentioned SQL code is created to pull up all the
user records specified “customer name” from its table of
“customers”. Conversely, if the "customerName” variable
is crafted and explicitly designed by one of the vulnerable
users, the SQL statements may perform more than the au-

Cyber-attacks, Global Communication, SQL injection attacks, Web applications.

thor intended. For instance, setting the ’customerName”
variable using as follows:
"OR’I’="1
Alternatively, consuming comments even to block the

rest of statements of the query (In here, mentioned three
types of different SQL comments). All the lines have a
specified space at the end of each of three statements as
follows:

i.’OR’I’="1" -

ii.” OR’1I’="1"

iii. > OR’1’="1" /*

The above codes render one of the above mentioned
SQL statements by parent language as follows:
1. select * from customers where name =" or ’1’="1";
ii. select * from customers where name =" or ’1’="1" - ’;

When these codes are to be consumed in an authen-
tication role procedure, then the above example could be
utilised to force to get a selection of every field of data (*)
from a customer SQL table, excluding one specified cus-
tomer name, as the author intended, due to the evaluation
of code *1’="1" usually is always true. The above value of

URC)
(c)

”customerName” in the statement mentioned below would
cause the deletion of the ”customers” table (SQL) as well as
get a selection of all the data from the “customerinfo” table
(in essence that revealing the information regarding every
user), using user API that allows more SQL statements:
a’;DROP TABLE customers; SELECT * FROM customer-
info WHERE ’t” =t

Such input renders the executing final SQL statements
as follows:
select * from customers where name = ’a’;drop table
customers;
select * from customerinfo where ’t’ =’t’;
To prevent SQL injection cyber-attacks, web application
developers may use specific tools to check the availability
and prevention of SQL injection attacks. At present, such
tools are WAF (Web Application Firewall) , “Positive
Tainting”, “SQLrand”, “CSSE”, “CANDID” etc.

Nevertheless, web application security is extremely vi-
tal in preventing SQL injection attacks. The developers
are subjected to numerous cyber-attacks because of im-
proper security coding practices, particularly malicious
source code injection. Further, several improper and in-
secure coding practices are frequently used with low en-
cryption, which is subjected to a lack of protection. Typic-
ally, SQL injection cyber-attacks execute through inserting
malicious code into a SQL query. Such malicious codes,
which the cyber attackers insert, are pretended as legitimate
SQL query statements. Hence, the web servers’ sequential
execution of such malicious codes affects the internal sys-
tem and database management systems, leading to SQL in-
jection cyber-attacks to execute improper SQL commands.
Most SQL injection attacks are effective due to a deficiency
of proper validation. A successful SQL injection attack
vastly interferes with the databases’ integrity, availability,
and confidentiality. In addition, based on the research find-
ings and general statistics and the available data on the in-
ternet, such SQL injection cyber-attacks have a severe im-
pact on global organisations. Accordingly, a practical solu-
tion is a vital global requirement to overcome SQL injection
attacks. With this view, there are three key objectives in this
research. The first objective is to detect the SQL injection
attacks that affect the web servers. Afterwards, the second
objective is to explore the preventive solution for SQL in-
jection attacks affecting the web servers. Finally, the third
objective is to share the knowledge on SQL injection at-
tacks with other researchers.

II LITERATURE REVIEW

At present, most people use web applications, which are
accessed through World Wide Web, precisely for long
distance communications, online marketing, distance
learning, e-banking and social media networks. Most of the

web applications are available for anyone globally without
any restrictions. Because of such reasons, it is exposed
to many challenges comprising more security issues cum
cyber-attacks via the internet. Consequently, Lijiu (2010)
revealed about the web application vulnerabilities, such as
malicious file execution, cross site scripting, SQL injection
and cross site request forgery, which have the connection
with secure coding of web applications. Further, Mark
(2006) also studied web application security vulnerabil-
ities, including different analysis tools. Moreover, Mark
(2006) identified different analysis tools such as source
code analysers, Black box scanners, DB scanners, Binary
analysis tools, Runtime analysis tools, Configuration
analysis tools and Proxy analysis tools. Accordingly, the
"MUSIC” tool checks the mutants in the SQL source
code queries. Further, the tool termed "SUSHI” is used
to resolve existing constraints in the strings. Moreover,
another tool termed ”Ardilla” is used to create SQL injec-
tion attacks and test web scenarios. In addition, the tool
termed ”String Analyser” is used to analyse the web strings.

In the prevailing literature, the usage of web applications
with validation using cryptographic modules and increas-
ing cyber threats related to security of web applications
have been explored (Dima, 1999). In view of that, web
applications are able to use the modules for password cryp-
tography, password generating and so on (Dima, 1999).
Further, Dima (1999) explored the usages connected to
web application components and how they are developed
overcoming the increasing cyber threats. Further, the us-
ages related to firewalls as a way of network site protection
against external intrusions and attacks were also explored
in the prevailing literature. In addition, Dima (1999)
explored the different components in a firewall policy such
as filtering packets, proper authentication, and application
gateways. Web based cyber-attacks occur as SQL injection
attacks and they prevail globally and cause severe impacts
with web applications. SQL injection attacks are conducted
with including a segment of malicious code into SQL query
via none or without proper validated environment and that
will receive by web servers. It was found that there are
faults regarding web applications; the most hazardous
types of vulnerabilities are Cross site scripting and SQL
injection attacks (Jose, 2008). It was identified the different
types of issues related to web application cyber-attacks
such as injection of commands, traversal of path, LDAP
injection, SQL injection and Spoofing of content (Sven,
2008). Further, more critical vulnerabilities are occurred
due to cross site scripting and SQL injection attacks
(Jose, 2008). Moreover, Lijiu (2010) revealed that web
application vulnerabilities such as malicious file execution,
cross site scripting, SQL injection and cross site request
forgery connect with secure coding of web applications.
It was explained regarding the vulnerabilities of SQL
injection attacks & cross site scripting, which caused harm

to several web applications (Andrea, 2012). There are
several SQL injection detection, and prevention tools are
available. Some are IDPs, Green SQL, dotDefender, Code
scan labs Etc. A mole is an open-source tool for detecting
SQL injection attacks. It generates reports regarding SQL
injection attacks. It evaluates provided URL of clients
(Pavitra Shankdhar, 2021).

Green SQL is an open-source application for detecting
and preventing SQL injection attacks. It supports "My
SQL” databases and evaluates SQL commands with a risk
scoring matrix. It generates reports regarding the SQL
injection attacks and blocks the vulnerable hosts(Ivano
Alessandro Elia, 2010).

SQLsus is an open source tool for detection of SQL in-
jection attacks. This tool can use for MySQL data bases.
It is written with “PERL” computer language. This tool
is fast and effiecient with detection of SQL injection at-
tacks(Ivano Alessandro Elia, 2010). SQLMap is an open
source automatic SQL injection attacks and database take
over application which is used for penetration testing. This
tool automates detection and exploitation of SQLi flaws.(
Drew Robb, 2022) Several researchers have introduced dif-
ferent SQL detection and preventive solutions based on the
prevailing literature. Accordingly, Rai and Nagpal (2019)
studied SQL injection attacks and proposed methods and
tools for detection and preventive solutions while discus-
sion their effectiveness. Further, Singh et al. (2014) also
proposed a model to block the SQL injections while ana-
lysing the existing detection prevention techniques against
SQL injection attacks. Moreover, Jemal et al. (2020) also
proposed solutions to mitigate SQL injection, specifically
through ontology and machine learning. A differential pro-
cess to safeguard against SQL injection attacks, used in
ASP.NET apps, has been introduced (Kausar et al., 2019).
In addition, Hu (2017) introduced a defence resistance and
remedy model of SQL injection attack, established from
non-intrusive SQL injection attack and defence.

III METHODOLOGY AND EXPERIMENTAL
DESIGN

In achieving the study’s objectives, the methodology
adopted by the researchers was creating an environmental
variable for the “php.exe” file as the first step. As the
second step, a “bat” file for run “’sql_injection_block.php”
file was created. As the third step, a “task scheduler”
adding “bat” file to run the “’sql_injection_block.php” file
continuously with appropriate time intervals was created.
APACHE log files to the proposed application with the
given command prompt command were linked as the final
step. The adopted SQL injection attack identification and
IP address blocking process are descriptively displayed
(Figure 1).

Accordingly, when the user input malicious code for
SQL injection attack, it will compare with SQL injection at-
tack patterns and if the user input compares with specified
patterns, then the user input attempt will take as a suspi-
cious attempt. If the number of attempts exceeded more
than the specified number of attempts, then that host IP ad-
dress will be blocked automatically. All the suspicious at-
tempts will be stored in the “’suspicious_ips” file. Blocked
IPs are too added to another file called “blocked_ips”.

User input APACHE APACHE
vulnerable Web

Web :
code or <erver server |:> Statle
saL analvsis

Vulnerable code
attempt count

More
than

specified
count

Access log
filec

statements

Yes
Permanent . .
R suspicious_i
Blocked ip @ , 4_"\
ps file

addresses

-

suspicious_i
psfile

Figure 1. SQL Injection attack identification and IP
address blocking process
Source: Developed by the researchers based on the
research study

The proposed solution has removal facility of blocked IP
addresses from the blacklisted list. User input time will also
be stored in the suspicious_ips” file, and it will be able to
analyse later.

A Access Log Analysis Methodology

First, have to set the path to APACHE access log files
in the “apache_acess.bat” file. Then it has to connect to
the task scheduler, and it is required to set the interval
of time that want to run reiterately. Source code files
have been located and it is required to give path of the
”sql_injection_block.php” with suitable parameters in the
bat file. All the installation and operatable processes will
be mentioned later in a detailed manner. After installation,
Apache access log files will be analysed after a specified
period in the task scheduler, and all the suspicious user at-
tempts in the apache log files will be stored in the “sus-
picious_ips”. If there are a considerable number of suspi-
cious attempts made by a user, then the IP is automatically

blocked after exceeding previously defined value and added
to the “blocked_ips” list. If it is required to remove some
identified blocked IP from the blocked IP list, it will re-
move such IP from the blocked IP list. Such operations are
mentioned in a detailed manner later. POST or GET user
inputs will be analysed, and therefore any POST or GET
malicious user inputs will be blocked with this solution.

B Specified SQL Injection Comparing Patterns

apacheaccesspaterns[] = ”/|select[*]from|select *
from|select\ *from| or’ 1’=1|/i”
apacheaccesspaterns[] = “/orl=1|update set|insert

into|delete from|/i”

apacheaccesspaterns[] = ”/order by |1’ 1|select count([\ *])|1
and 1=1|4"

apacheaccesspaterns[] ="/1| |O|R|= |
'|1 UNION ALL SELECT 1,2,3,4,5,6,name FROM
sysObjects WHERE xtype = "U’ —|/i”

C Installation Process for Manual Process

This solution was designed for Windows Operating Sys-
tem, but later, the research will continue for Linux Oper-
ating System. This solution was designed with "XAMPP”
installer. At first, it is required to install "XAMPP” soft-
ware. Then it is required to set environmental variable path
to PHP folder as follows; First, go to the control panel.

e First, go to the control panel.

e Then, go to “system”.

e Next, go to “change setting”.

e Then, go to “Advanced” tab.

e Then, go to environmental variables.

e Then, select the ”Path” environmental variable (Figure
2) and go to “Edit”, and click.

e Then, click new and type or copy and paste the path to
the "PHP” folder (Figure), select the area and click the
”ok” button.

Afterwards, it is required to locate the sql_injection_block”
folder as your preference. Then, it is required to open a
command prompt and change the command prompt loca-
tion to the ’sql_injection_block™ directory.

D Manual Operating Process

At first, it is required to take the command prompt
location to “sql-injection_block™ directory location and
enter the command, “php sql-injection_block.php”, “php
sql_injection_block.php -h” or “php sql_injection_block.php

—help”.

Obtaining user operating options and details option 1

C:\xampp'htdocs\sql-injection_block>
php sql_injection_block.php

Obtaining user operating options and details option 2

C:\xampp) htdocs\sql_injection_block>
php sql_injection_block.php -h

Obtaining user operating options and details option 3
C:\xampp\htdocs\ sql_injection_block> php
sql-injection_block.php —help

1 Obtaining Statistics:

Firstly, it is required to take the command prompt location
to “sql-injection_block™ directory location and enter the
command,

“php sql_injection_block.php —statistics” or

“php sql_injection_block.php -s”.

Obtaining statistics option 1
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -s

Obtaining statistics option 2
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php —statistics

When entering the above mentioned command for
the first time, it will be appeared as ”"No data!” due
to the absence of the ’suspicious_ips” file. = Before
obtaining the statistics it is required to parse the
apache log files as below figure entering command
"PHP sql.injection_block.php —parse-apache-log -
path=C:\xampp\apache\logs\access.log”.

Initially, it is required to take the command prompt
location to “sql-injection_block” directory location and
enter the command,

“php sql.injection_block.php —parse-apache-log —
path=C:\xampp\apache\logs\access.log”.
Parsing APACHE log files option 1
C:\xampp\htdocs\ sql_injection_block>
php sql_injection_block.php —parse-apache-log —
path=C:\xampp\apache\logs\access.log

Parsing APACHE log files option 2
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -a -C:\xampp)\ apache
logs\access.log

I]R(::j)
(\‘“J

Figure 2. Obtaining statistics
Source: Developed by the researchers based on the
research study

Firstly, it is required to take the command prompt location
to ”sql-injection_block™ directory location and enter
the command, "PHP sql.injection_block.php —statistics”
or”’PHP sql_injection_block.php -s”.

Obtaining statistics option 1
C:\xampp\htdocs\sql_injection_block >
php sql-injection_block.php -s

Obtaining statistics option 2

C:\xampp\htdocs\ sql_injection_block >

php sql_injection_block.php —statistics
After parsing APACHE access log files, it is possible to ob-
tain the statistics (Figure 5).

2 Obtaining List of Black Listed IP Addresses:

Initially, it is required to take the command prompt location
to ”’sql-injection_block™ directory location and enter the
command, “PHP sql.injection_block.php —list” or”’PHP
sql-injection_block.php -1”.

Obtaining black listed IP addresses option 1
C:\xampp\htdocs\sql_injection_block >
php sql-injection_block.php -1

Obtaining black listed IP addresses option 2
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php —list

When entering the above mentioned command for the
first time, it is appeared as "No data!” due to absence of
the ”suspicious_ips” file. Before obtaining statistics, it is
required to parse the apache log files as in below (Figure 3)
entering command "PHP sql_injection_block.php —parse-
apache-log —path=C:\ xampp\apache\ logs\ access.log”.

Firstly, it is required to take the command prompt
location to “sql.injection_block” directory location and
enter the command, “php sql.injection_block.php —parse-
apache-log —path=C:\xampp\apache\logs\access.log”. -
path=C:\xampp\apache\logs\access .log”.

BH Command Prompt

injection_block>»php sgl_injection_block.php --list

Figure 3. Obtaining blacklisted IP addresses
Source: Developed by the researchers based on the
research study

Firstly, it is required to take the command prompt
location to “sql.injection_block™ directory location and
enter the command, "PHP sql_injection_block.php -list”
or”’PHP sql_injection_block.php -1”.

Obtaining black listed IP addresses option 1
C:\xampp\htdocs\ sql-injection_block>
php sql-injection_block.php -1

Obtaining black listed IP addresses
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php-list

option 2

After parsing APACHE access log files, it is possible to
get blacklisted IP addresses.

3 Obtaining List of Black Listed IP Addresses with
Suspicious Activity Count:

Firstly, it is required to take the command prompt location
to sql.injection_block™ directory location and enter the
command,”PHP sql.injection_block.php-list ~ —count”
or”’PHP sql_injection_block.php -1 -c”.

Obtaining black listed IP addresses with suspicious count
option 1

C:\xampp\htdocs\ sql_injection_block>

php sql_injection_block.php -1 -c

Obtaining black listed IP addresses with suspicious count
option 2

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php-list —count

When entering the above mentioned command for the
first time, it is appeared as "No data!” due to absence of

I]R(::j)
(y

the “suspicious_ips” file. Before obtaining statistics it is re-
quired to parse the apache log files as below figure entering
command “PHP sql_injection_block.php —parse-apache-log
—path=C:\xampp\ apache\logs\access.log”.

4 Obtaining Black Listed IPs with Suspicious Activity
Time:

Initially, it is required to take the command prompt location
to sql.injection_block” directory location and enter the
command “PHP sql.injection_block.php -list —time”
or”’php sql_injection_block.php -1 -t”.

Obtaining black listed IPs with suspicious activity time
option 1

C:\xampp\htdocs\ sql_injection_block >

php sql_injection_block.php -1 -t

Obtaining black listed IPs with suspicious activity time
option 2

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php —list —time

When enter the first time above mentioned command,
then will get "No data!” due to absence of the “sus-
picious_ips” file. Before obtaining statistics, have to
parse the apache log files as below figure entering
command "PHPsql_injection_block.php—parse-apache-log—
path=C:\xampp\apache\logs\access.log”.

BE¥ Command Prompt

hp sgl_injection_block.php -1 -t

C:\xampp\h

gl_injection_block>

Figure 4. Blacklisted IPs with last activity time
Source: Developed by the researchers based on the
research study

5 Obtaining Black Listed IPs with Suspicious Activity
Count and Time:

Initially, it is required to take the command prompt
location to “sql-injection_block™ directory location and
enter the command, "PHP sql.injection_block.php —list
—count —time” or”’php sql_injection_block.php -1 -c -t”.

Obtaining black listed IPs with suspicious activity count
and time option 1

C:\xampp\htdocs\ sql_injection_block >

php sql_injection_block.php -1 -c -t

Obtaining black listed IPs with suspicious activity count
and time option 2

C:\xampp\htdocs\ sql-injection_block>

php sql-injection_block.php —list —count —time

When entering the above mentioned command for the
first time, it is appeared as "No data!” due to absence of
the “suspicious_ips” file. Before obtaining statistics, have
to parse the apache log files as below figure entering com-
mand "PHP sql.injection_block.php —parse-apache-log —
path=C:\xampp\apache\logs\access.log”.

B Command Prompt

jection_block.php -1 -c -t

Figure 5. Parsing APACHE access log files obtaining
blacklisted IPs with suspicious activity count and time
Source: Developed by the researchers based on the
research study

6 Removing Black Listed IP Addresses and Adding to
White List:

Removing black listed IP option 1
C:\xampp\htdocs\ sql_injection_block>
php sql_injection_block.php -r123.231.48.246

Removing black listed IP option 2

C:\xampp\htdocs\ sql_injection_block>

php sql-injection_block.php -
romove=123.231.48.246

B Select Command Prompt

Figure 6. Removing blacklisted IPs
Source: Developed by the researchers based on the
research study

E Installation Process for Automated Process

This solution was designed for Windows Operating System
and later research will be continued for Linux Operating
System. This solution was designed with "XAMPP” in-
staller and. At first, it is required to install “XAMPP” soft-
ware.

1 Setting the Environmental Variable Path to PHP
Folder:

Setting the environmental variable path to PHP folder as
follows;

1. First, go to the control panel.
2. Then, go to “system”.

3. Next, go to “change setting”.
4. Then, go to “Advanced” tab.

5. Then, go to environmental variables.

Figure 7. Environmental variables
Source: Developed by the researchers based on the
research study

6. Then, select the “Path” environmental variable as in
the above “Figure 10” and go to “Edit” and click.

7. Then, click new and type or copy and paste the path to
the "PHP” folder as in the below figure, selected area
and click the ”ok” button.

8. Create the “’sql_injection_block.bat” file as in below
(Figure 8).

l
cd C:\xampp\htdoc

Pho C:\xampp\ntd _block\sql_injection_block --parse-apache-log --path=C:\xampp\apache\logs\access. log

Figure 8. sql_injection_block.bat file
Source: Developed by the researchers based on the
research study

In here, “cd <sql.injection_block directory path>
”PHP <path to the apache access log file>" are in-
serted.

9. Then locate the “sql_injection_block.bat” file in the
sql-injection_block directory.

2 Adding the Bat File to the “Task Scheduler”:

1. Go to the start menu and type “control panel” and
click it.

2. Then, go to “Administrative tools”.
3. Then, go to “Task schedular”.

4. Create new task“sql_injection_block™. It is required to
set triggering settings for at least thirty minutes and
repeat activity after every thirty minutes and it is re-
quired to make sure not to set run multiple processes.
Then, it is required to set settings as Queue.

5. Then run the task “sql_injection_block™.

F IP Addresses Blocking Process

After the vulnerable IP addresses are detected, the identi-
fied IP addresses will be added to the ”suspicious_ips” file.
Then, that suspicious IP address will be added to the ”.htac-
cess” file for access denied. When it is required to remove
a blocked IP address, then the IP address will be removed
from the ”.htaccess” file.

[&f *Cixampp\htdocs\.htaccess - Notepad++
File Edit Search View Enceding Language Settings Tools Macro Run Plugins Window ?

cHEHE 20 & Diociyglax B =1 EREAa®|E
il htzcsess £1 |
1 Deny from ::1
2 Deny from 116.196.120.180
Deny from 77.157.50.152

Deny from 60.62.206.60
Deny from 37.144.593.17
Deny from 43.250.240.152

3.205.190
8.246
Ul

Deny from 187
Deny from 123
Deny from 93.1

10 Deny from 43.241 89

11 [peny from 43.250.242.203

Figure 9. htaccess file inside
Source: Developed by the researchers based on the
research study

G Performance Analysis and Evaluation of the Current
System

When the user requests and inputs malicious codes or any
input that caused to SQL injection attack or any valid user
purposes, it will be compared with SQL injection primitive
attack patterns and then user requests and inputs will be
compared with specified patterns in the proposed system.
As well as, if such user requests are matched with specified
malicious patterns in the proposed system, such user input
attempts will be taken as suspicious attempts, and the IP
address of such attempts coming will be taken as the sus-
picious IP address. If several such attempts are exceeded
more than a specified number of malicious attempts, then
that host IP address will be blocked automatically. All the
suspicious attempts will be stored in the “suspicious_ips”
file. Blocked IPs added to another file called “blocked_ips”.
If it is required to remove the blocked IP address from
the list, this solution has a facility to do that. It was

I]R(::j)
(y

explained earlier. User input times will also be stored in
the suspicious_ips” file, which will be able to analyse later.

As the first step, it is required to set the path to APACHE
access log files in the “apache_acess.bat” file. Then it
is required to connect to the task scheduler, and it is re-
quired to set the interval of time that want to run reiter-
ately. Source code files have to be located and it is required
to give path of the ”sql_injection_block.php” with suitable
parameters in the bat file. All the installation and operat-
able processes will be mentioned later in a detailed manner.
After installing the Apache access log files, it will be ana-
lysed after the specified period in the task scheduler, and all
the suspicious user attempts in the apache log files will be
stored in the “suspicious_ips”. If user suspicious attempts
are more than the specified count of the source code, then
that user will be blocked automatically and added to the
“blocked_ips” list. If it is required to remove some identi-
fied blocked IP from the blocked IP list, it will remove such
IP from the blocked IP list. Such operations were men-
tioned in a detailed manner earlier with commands. POST
or GET user inputs will be analysed, and therefore any
POST or GET malicious user inputs will be blocked with
this solution. After processing of the ”suspicious_ips” file,
if suspicious pattern, matching count is exceeded the spe-
cified count in the proposed system, then such IP addresses
will be added to the “.htaccess” file as “deny access jIP ad-
dress;”. Then that IP address will be blocked for external
users for internet access.

B Command Prompt

Figure 10. Blacklisted IP addresses
Source: Developed by the researchers based on the
research study

The detailed results are descriptively elaborated under the
section of Results.

IV RESULTS

Under this section, the statistics of the user requests
are explained. The result issuing command, namely,
”—statistics”, the most active top five addresses termed
127.0.0.1, 43.250.240.152, 93.174.93.149, 103.242.0.73
and 103.45.9.123 were obtained. The recorded occurrence
of the IP address of 127.0.0.1 was 254448. The recorded
occurrence of the IP address of 43.250.240.152 was 6042.
The recorded occurrence of the IP address of 93.174.93.149

was 1558. The recorded occurrence of the IP address of
103.242.0.73 was 1444. The recorded occurrence of the IP
address of 103.45.9.123 was 1444.

B8 Command Prompt

C:\xampp\htdocs\sql_injection_block>

Figure 11. Analysed user request statistics
Source: Developed by the researchers based on the
research study

The analysed and processed statistics of user requests,
which the users requested, are descriptively displayed (Fig-
ure 11). The counted malicious attempts and the top five
IP addresses are descriptively displayed in Figure 12. Fur-
ther, the last activity time figures also are displayed. The
last activity recorded date and time for IP address 127.0.0.1
was 2018-08-01 at 14:22:07. The last activity recorded
date and time for IP address 43.250.240 was 2018-10-10 at
13:47:23. The last activity recorded date and time for IP ad-
dress 93.174.93.149 was 2018-06-25 at 13:02:56. The last
activity recorded date and time for IP address 103.242.0.73
was 2018-06-12 at 09:31:42. The last activity recorded date
and time for IP address 103.45.9.123 was 2018-05-22 at
07:40:52. According to the second table of Figure 16, the
last five IP addresses with the last activity details are dis-
played.

A Listing of Black Listed IP Addresses

According to figure 16, they were obtained using the —list”
command in the console. IP address blacklist happened due
to the host trying for vulnerable patterns as HTTP requests
several times. After exceeding the predefined maximum
count, IP addresses were blacklisted as vulnerable IP ad-
dresses. The results of the listing of blacklisted IP addresses
is descriptively displayed.

I]R(::j)
(t)

E¥ Command Prompt

-list

injection_block>php sgl_injection_block.php -

Figure 12. Listing of blacklisted IP addresses
Source: Developed by the researchers based on the
research study

The above mentioned ”Listing of blacklisted IP ad-
dresses”. Listing of blacklisted IP addresses that user
requests are coming from. The IP addresses mentioned
in “Figure 117 shows requested vulnerable requests more
than the specified vulnerable attempt count in the pro-
posed solution. After entry of the statement termed,
”"Deny from <IP address>" to the “.htaccess” file, ac-
cessing the webserver was blocked for that specific IP
address. 7403 forbidden” Error occurred after that host
tried to access again. The blacklisted IP addresses
are 123.231.48.246, 139.162.116.133, 43.241.252.89,
43.250.240.152, 43.250.242.203 43.250.242.161, and
43.250.242.107 were received after analysing of apache ac-
cess.log file. If it is required to remove some IP addresses
from the blacklisted list, then it will not appear in the black-
listed IP address list and that IP address will be able to
access the webserver continuously without any hindrance.
Then, IP details of the “suspicious_IPs” file will be up-
dated stored in the suspicious_IPs” file. “-remove = <
IP address > command used to remove IP address from
the blacklisted IP address list. After analysing apache ac-
cess.log files, these blacklisted IP address details will be
stored in the “’suspicious_IPs” file and then later also could
be able to analyse and will be able to get the backup cop-
ies. When using the ”—list” command other details such as;
blacklisted time, suspicious occurrences count, last activity
time like such details regarding that IP address will not be
displayed, and only the IP address will be displayed. If such
details are required, then it is required to enter other com-
mands and that commands will be explained in a detailed
manner later.

B Listing of Black Listed IP Addresses with Suspicious
Attempt Count

According to figure 18, the results of listing blacklisted
IP addresses with a count of vulnerable activities tried as
HTTP requests are descriptively shown. When using the
”_list —count” command other details such as; blacklisted
time, last activity time like such details regarding that IP
address will not be displayed and only IP address with a
count of occurrences of vulnerable activities as HTTP re-
quests will be displayed. If such details are required, it is
required to enter other commands, which will be explained

later. After issuing the ”—list —count” command, blacklis-
ted IP addresses with vulnerable activity count is shown in
figure 17, 5.3 listing of blacklisted IP addresses with sus-
picious attempt count”.

B8 Command Prompt

Figure 13. Listing of blacklisted IP addresses with
suspicious attempt counts
Source: Developed by the researchers based on the
research study

Above mentioned “Listing of blacklisted IP addresses
with suspicious attempt count” provides the listing of
blacklisted IP addresses that user requests with suspicious
attempts count in front of them. In here 123.231.48.246,
139.162.116.133, 43.241.252.89, 43.250.240.152,
43.250.242.203, 43.250.242.161, 43.250.242.107 were
the blacklisted IP addresses. The blacklisted IP address
123.231.48.246 was recorded with 225 vulnerable activity
counts. The blacklisted IP address 139.162.116.133 was re-
corded with 11 vulnerable activity counts. The blacklisted
IP address 43.241.252.89 was recorded with 254 vulnerable
activity counts. The blacklisted IP address 43.250.240.152
was recorded with 260 vulnerable activity counts. The
blacklisted IP address 43.250.242.203 was recorded with
140 vulnerable activity counts. The blacklisted IP address
43.250.242.161 was recorded with 76 vulnerable activity
counts. The blacklisted IP address 43.250.242.107 was
recorded with 1136 vulnerable activity counts. After
analysing apache access.log files, these blacklisted IP
address details were stored in the “suspicious_IPs” file.

There is a PHP function called “parseFile” in the
Apacheaccesslogparser.php file and within that function,
new IP details were added to the “suspicious_IPs” file.
When issuing the command “-list —count”, these details
were taken from the suspicious_IPs” file. When using the
”—list —count” command other details such as; blacklisted
time, last activity time like such details regarding that IP ad-
dress were not displayed and only blacklisted IP addresses
with vulnerable activity count were displayed. If such de-
tails are required, then it is necessary to enter other com-
mands and that commands will be explained in a detailed
manner well ahead.

C Listing of Black Listed IP Addresses with Last
Suspicious Attempt Time

The results of the blacklisted IP addresses with the last
activity time is displayed in figure 19. The results were ob-
tained using the “-list —time” command in console. After

analysing apache access.log files these blacklisted IP ad-
dresses and other details will be stored in the suspi-
cious_IPs” file, and when issuing the command ~—list —
time”, then these details will be taken from the “suspi-
cious_IPs” file.

EX Command Prompt

.php --list -time

Figure 14. Listing of blacklisted IP addresses with last
suspicious attempt times
Source: Developed by the researchers based on the
research study

The above mentioned “Listing of black listed IP addresses
with last suspicious attempt time” (Figure 14) shows
the listing of black listed IP addresses that user requests
coming from with their suspicious last attempted time in
front of them.

123.231.48.246, 139.162.116.133,
43.241.252.89, 43.250.240.152, 43.250.242.203,
43.250.242.161, 43.250.242.107 were the blacklisted
IP addresses. The blacklisted IP address 123.231.48.246
was recorded with the last vulnerable activity date and
time as 2018-10-11 at 06:51:40. The blacklisted IP address
139.162.116.133 was recorded with the last vulnerable
activity date and time as 2018-10-16 at 11:25:01. The
blacklisted IP address 43.241.252.89 was recorded with
the last vulnerable activity date and time as 2018-10-09 at
10:04:59. The blacklisted IP address 43.250.240.152 was
recorded with the last vulnerable activity date and time
as 2018-10-10 at 14:31:09. The blacklisted IP address
43.250.242.203 was recorded with the last vulnerable
activity date and time as 2018-10-23 at 10:06:38. The
blacklisted IP address 43.250.242.161 was recorded with
the last vulnerable activity date and time as 2018-12-04 at
05:00:26. The blacklisted IP address 43.250.242.107 was
recorded with the last vulnerable activity date and time as
2018-12-04 at 06:13:16. These details were added to the
”suspicious_IPs” file from the “S$ipInfo” array. The new
IP details were added to the “$ipInfo” array within the
” Apacheaccesslogparser.php” file. A PHP function called
“parseFile” was included there and within that function,
new IP details were added to the “’suspicious_IPs” file.

In here,

D Listing of Black Listed IP Addresses with Suspicious
Attempt Count and Last Suspicious Attempt Time

The result of listing blacklisted IP addresses with the last
activity time and count of suspicious activities are shown

below (Figure 15). That results were obtained using the ”—
list—count —time” command in console.

&8 Comman d Prompt

Figure 15. Listing of blacklisted IP addresses with
suspicious attempt count and last suspicious attempt time
Source: Developed by the researchers based on the
research study

Above mentioned “Listing of blacklisted IP addresses
with suspicious attempt count and last suspicious attempt
time” with the listing of blacklisted IP addresses that user
requests coming from with their suspicious last attempted
time and suspicious attempt count in front of them. In
here 123.231.48.246, 139.162.116.133, 43.241.252.89,
43.250.240.152, 43.250.242.203, 43.250.242.161,
43.250.242.107 were the blacklisted IP addresses. The
blacklisted IP address 123.231.48.246 was recorded with
the last vulnerable activity date and time as 2018-10-11 at
06:51:40 and the count of vulnerable activities as 225. The
blacklisted IP address 139.162.116.133 was recorded with
the last vulnerable activity date and time as 2018-10-16 at
11:25:01 and the count of vulnerable activities as 11.

The blacklisted IP address 43.241.252.89 was recorded
with the last vulnerable activity date and time as 2018-
10-09 at 10:04:59 and the count of vulnerable activities
as 254. The blacklisted IP address 43.250.240.152 was
recorded with the last vulnerable activity date and time as
2018-10-10 at 14:31:09 and the count of vulnerable activit-
ies as 260. The blacklisted IP address 43.250.242.203 was
recorded with the last vulnerable activity date and time as
2018-10-23 at 10:06:38 and the count of vulnerable activ-
ities as 140. The blacklisted IP address 43.250.242.161
was recorded with the last vulnerable activity date and
time as 2018-12-04 at 05:00:26 and the count of vulnerable
activities as 76.

The blacklisted IP address 43.250.242.107 was recorded
with the last vulnerable activity date and time as 2018-
12-04 at 06:13:16 and the count of vulnerable activities as
1136. After analysing apache access.log files these black-
listed IP addresses and other details were stored in the sus-
picious_IPs” file, and when issuing the command “—list —
count —time”, then these details were taken from the “sus-
picious_IPs” file.

E Apache Access Log File Analysis

The results of parsing Apache access.log file analysis is dis-
played below (Figure 16). That results were obtained using

10

the “—parse-apache-log —path = <path to the Apache ac-
cess.log file>" command in console. In here, ’suspicious
IP addresses before processing: 76” means, before parsing
Apache access.log file for the processing which was pre-
viously stored suspicious IP addresses count in the ”suspi-
cious_IPs” file is 76. When single suspicious activity was
encountered from an IP address, then that IP address was
taken as a suspicious IP address. Further, it became a black-
listed IP address when exceeding the predefined suspicious
activity count.

d Prom

Figure 16. Apache access log file analysis
Source: Developed by the researchers based on the
research study

Above mentioned “Apache access log file analysis”
in “Figure 16” shows the listing of blacklisted IP ad-
dresses that user requests coming from with suspicious
IP addresses count before processing, Blacklisted IP
addresses count before processing, Total vulnerable
pattern match count, suspicious IP addresses count after
processing, Blacklisted IP addresses count after processing.

Here, ”Blacklisted IP addresses before processing was
11” means, before parsing Apache access.log file for pro-
cessing. Previously stored blacklisted IP addresses count in
the ’suspicious_IPs” file is 11. Here total vulnerable pattern
match count was 7785. Here “suspicious IP addresses after
processing: 77 means, after parsing Apache access.log file
for processing total stored suspicious IP addresses count in
the ”suspicious_IPs” file is 77 and new one suspicious IP
address added to the “suspicious_IPs” file after parsing the
Apache access.log file for processing.

Here ”Blacklisted IP addresses after processing was 117
means that after parsing Apache access.log file for pro-
cessing, the total stored blacklisted IP addresses count in
the ”suspicious_IPs” file was 11. It means no new blacklis-
ted IP address was added to the “’suspicious_IPs” file.

F Removing Blacklisted IP Address

The removal of blacklisted IP addresses is shown below
(Figure 17). That results were obtained using the "—remove
= <IP address>" command in console. After removing the
blacklisted IP address, it was stored in the “’suspicious_IPs”
file.

Figure 17. Removing blacklisted IP address
Source: Developed by the researchers based on the
research study

Figure 17 shows removing blacklisted IP addresses and
after removing that IP address, all suspicious activity count
of that IP address, last activity time of that IP address. All
blacklisted IP addresses are listed hereafter, removing the
specified IP address. When removing some IP addresses
from the blacklisted IP address list, it did not appear in the
blacklisted IP address list and that IP address was able to
access the webserver continuously without any hindrance.
Then IP details of the “’suspicious_IPs” file were updated
and stored in the “suspicious_IPs” file then; later can be
analysed and will be able to get backup copies. The com-
mand ”-remove = < IP address > ” was used to remove an
IP address from the blacklisted IP address list. Removing
blacklisted IP addresses will do from handling ”.htaccess”
file. In here, ”.htacess” was used to block vulnerable hosts,
adding "Deny from <ipaddress>" code inside it, and this
code will be added to every vulnerable blacklisted IP ad-
dress to block the server access. Then it will be given a 403
Forbidden” error to the vulnerable host preventing access to
the server. After removing the blacklisted IP address from
the blacklisted list, then ”Deny from <ipaddress>" entry
will be removed from the ”.htaccess” file for the relevant
removed IP address.

G Test an Evaluation of Final Host IP Address Blocking

43.250.242.107

Figure 18. Host public IP address
Source: Developed by the researchers based on the
research study

Above Figure 18 shows the tested vulnerable host public IP
address (43.250.242.107).

B Command Prompt

Figure 19. Blacklisted IP addresses
Source: Developed by the researchers based on the
research study

Above figure 15 shows the black listed vulnerable host
public IP addresses. Above figure 19 shows that the public
IP address (43.250.242.107) did not belong to the black
listed IP addresses after removing the public IP address
(43.250.242.107) from black listed IP addresses list in
figure 20.

Vulnerable host (public IP address (43.250.242.107))
was trying to access a web server (public IP address
(43.250.242.107)) with vulnerable user inputs ’or’1’=1"
continuously and after the exceeding of maximum count
of vulnerable accesses IP address, 43.250.242.107 added
to the blacklisted IP address list.

B8 Command Prompt

Figure 20. Trying to access web Server with vulnerable
codes
Source: Developed by the researchers based on the
research study

Above figure 20 shows the IP address, 43.250.242.107 ad-
ded to the black listed IP address list.

Showing resuls for /p address

43.250.242.107

Figure 21. Trying to access web Server after vulnerable
host blacklisted
Source: Developed by the researchers based on the
research study

12

Above figure 21 shows web results when trying to
access web server after vulnerable host (IP address
43.250.242.107) got blacklisted with a legitimate URL.

V DISCUSSION AND CONCLUSION

The proposed solution for SQL injection prevention facil-
itates the continuous monitoring of suspicious activities.
Conferring to this proposed solution, there is no require-
ment for the user to be concerned about monitoring IP ad-
dress blocking activities in web applications. Further, the
proposed solution automatically blocks the vulnerable hosts
using its IP address. Moreover, the proposed solution fa-
cilitates a listing of blocked IP addresses if the user needs
to remove some IP addresses from the blacklisted IP ad-
dress list. As well as, the user could be able to customise
the blocked IP address list according to his will. Further,
this proposed solution facilitates the user to view the last
activity time of the suspicious IP addresses with the suspi-
cious activity count; then, the user will compare each of the
suspicious IP addresses. In view of that, all the suspicious
activities will be stored in a file, including suspicious activ-
ity time and activity count; then, the user will be able to
process later or analyse such details further, and such data
backups are also able to take. However, the proposed solu-
tion is designed mainly for "Windows” operating systems
and have to install ”XAMPP” or ”"WAMP” software, which
is freely available on the internet. The proposed solution is
composed of a set of vulnerable user HTTP request patterns
& it is recommended to add more vulnerable user HTTP
request patterns. Then the user faithfulness to the proposed
system will be increased. Further, it is recommended to use
XAMPP version 7 or above. Finally, the proposed solution
is recommended for "Windows 7” or above.

REFERENCES
[1] S.W. Booyd, and A.D. Keromytiss, “SQL
Rand: Preventing SQL injection at-
tacks,” Colombia University, Available:
https://www 1.cs.columbia.edu/~angelos/Papers/sqlr
and.pdf, [Accessed May 5, 2018].
[2] G. Buehrer, B. Weide, and P. Sivilotti, “Us-
ing parse tree validation to prevent SQL
injection attacks,” Research Gate, Avail-
able: Error! Hyperlink reference not valid.
221215947 _Using_parse_tree_validation_to_prevent

_SQL._injection_attacks [Accessed June 5, 2018].

S. Christensen, A. Moller, and M. S. Precise, Ana-
lysis of String Expressions. Berlin, Germany:
Springer, 2003, pp. 1-50.

URC)
(c)

(4]

(5]

(6]

(7]

(8]

[9]

S. Faker, M. Muslim, and H. Dachlan, “A System-
atic Literature Review on SQL Injection Attacks
Techniques and Common Exploited Vulnerabilit-
ies,” International Journal of Computer Engineering
and Information Technology, vol. 9, 2017, Avail-
able: http://www.ijceit.org/ published/ volume9/ is-
suel12/ 2Vol9No12.pdf [Accessed Jan. 26, 2018].

'W. Halfond, and A. Orso, Malware Detection. Bo-
ston, USA: Springer, 2007, pp. 86.

E. Janot, and P. Zavarsky, ‘“Preventing SQL
Injections in Online Applications: Study, Recom-
mendations and Java Solution Prototype Based on
the SQL DOM,” Research Gate, 2008, Available:
file:///C:/Users/CRD/Downloads/2008 _OWASP_
AppSec_Preventing_SQL _injections_in_online_appli
cations.pdf [Accessed Mar. 15, 2018].

I. Jemal, O. Cheikhrouhou, H. Hamam, and H.
Mahfoudhi, “SQL Injection Attack Detection and
Prevention Techniques Using Machine Learning,”
International Journal of Applied Engineering Re-
search, vol. 15, 2020, pp. 569-580.

M.A. Kausar, M. Nasar, and A. Moyaid, “SQL
Injection Detection and Prevention Techniques in
ASP.NET Web Application,” International Journal
of Recent Technology and Engineering, vol. 3,
2019, pp. 7759-7766.

H. Kaur and S. Dhingra, “A Review: Prevent SQL
Injection Attacks Using IPS,” International Journal
of Advanced Research in Computer and Commu-
nication Engineering, vol. 3, 2014, pp. 8124-8126,
Available: https://ijarcce.com/wp-content/uploads/
2014/10/IJARCCE11I-a-amit-harpreet1-A-Review-
Prevent-SQL-Injection-Attacks-Using-IPS.pdf
[Accessed August 07, 2018].

[I0JH. Mehta, “Threat Intelligence.,” Sy-
mantec enterprise blogs security, 2018
[online] Available: https://symantec-

enterprise-blogs.security.com/blogs/threat-
intelligence/microsoft-patch-tuesday-november-
2018 [Accessed Nov. 15, 2018].

[11]F. Mavituna, (2008). Deep Blind SQL Injection.

Portcullis Security, 2008 [online] p.A11. Available:
Error! Hyperlink reference not valid. / [Accessed
Aug. 20, 2018].

13

[18]O.

[12]A. Makiou, Y. Begriche, and A. Serhrouchni,

“Hybrid Approach to Detect SQLi Attacks
and Evasion Techniques. HAL archives, 2015,
Available: https://hal.archives-ouvertes.fr/hal-
01138604/document [Accessed Oct. 10, 2018].

[13]R. Muhammad, S. Habib and R. Bashir, “De-

tection and Prevention of SQL Injection Attack
by Dynamic Analyser and Testing Model,”
Research Gate, 2017, Available: https:/

www.researchgate.net/publication/319453593 Detecti

on_and_Prevention_of_SQL _Injection_Attack_by
_Dynamic_Analyzer_and_Testing_Model
[Accessed Nov. 02, 2018].

[14]S. Rai, and B. Nagpal, “Detection and Prevention of

SQL Injection Attacks: Developments of the Dec-
ade.” 3" International Conference on Reliability,
Infocom Technologies and Optimisation (ICRITO)
(Trends and Future Directions), AIIT, Amity Uni-
versity Uttar Pradesh, Noida, India, 2014.

[15]J. Singh, “Analysis of SQL Injection Detection

Techniques,” 2017, Available: Error! Hyperlink
reference not valid. 1605.02796.pdf [Accessed Jun.
08, 2018].

[16]S. Singh, U. Tripathi, and M. Mishra, “Detection

and Prevention of SQL Injection AttackUsing
Hashing Technique. International Journal of Mod-
ern Communication Technologies and Research
(IIMCTR), [online], vol. 2, 2014, Available: ht-

tps://www.academia.edu/9378445/Detection_and_Prev

ention_of_SQL_Injection_Attack_Using_Hashing_
Technique [Accessed Aug. 22, 2018].

[17]F. Valeur, D. Mutz, and G. Vigna, “A Learning-

Based Approach to the Detection of SQL Attacks,”
Research Gate, 2005, Available: Error! Hyperlink
reference not valid. 225239186_A _Learning-
Based_Approach_to_the_Detection_of
_SQL_Attacks

[Accessed Jul. 15, 2018].

Voitovych, and L. Kupershtein,
“SQL injection prevention system,” Re-
search Gate, 2016, Auvailable: ht-

tps://www.researchgate.net/publication/310454603_S
QL_injection_prevention_system [Accessed Aug.
15, 2018].

[19]D. Robb, “Best SQL Injection (SQLi) Detection
Tools 2022, Serverwatch, 2022, Available: ht-
tps://www.serverwatch. com/reviews/sql-injection-
detection-tools/ [Accessed Mar. 08, 2022].

[20]P. Shankdhar, “Best free and open source SQL
injection tools [updated 2021],” INFOSEC, 2021,
Available: https:// resources. Infosecinstitute .com
/ topic / best-free — and — open — source — sql -
injection-tools/ [Accessed Mar. 05, 2022].

ACKNOWLEDGMENT

We immensely thank all the professionals who supported in
developing this noteworthy proposed system for SQL injec-
tion detection and prevention in various web applications.
Further, we greatly thank all the researchers in the fields of
Cyber Security and Software Engineering who contributed
greatly to enhancing the pool of literature, which helped us
in order to succeed in our creation.

AUTHOR BIOGRAPHY/IES

GIM Ariyathilake BSc(hons) in
IT, MSc in IT (Specialization in
Cyber Security) is working as
Research Officer at Centre for
Defence Research and
Development

Mrs MHR Sandeepanie MBA,
BSc(Special)(Hons), National Dip.
Training & HRD, National Dip. HRM,
IPICT(Denmark) is working as Senior
Assistant Registrar at General Sir John
Kotelawala Defence University and
presently reading for PhD in Manage-
ment at University of Sri Jayewardenepura.

Dr PL Rupasinghe PhD (Curtin Univer-
sity of Technology, Australia), MBA (PIM,
USJ), BSc(Hons) is working as Senior Lec-
turer at Sri Lanka Institute of Information

" . Technology.

14

