
458

Implementation of a Fast Algorithm for Multipoint Evaluation of Univariate Polynomials

WA Gunarathna1 and HM Nasir
1Department of IT & Mathematics, Faculty of Engineering, General Sir John Kotelawala Defence
University, SriLanka
'Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka

Abstract

Let f(z) = /0 + Ji z + · · · + r.; z''-1 be a pol.ynornia1 of degree n -1 with complex coefficients,
Let S = {z0, z1, · • ·, zn-l }be a set of complex points. The straightforward method of evaluation of
f (z 1) for all points in requires arithmetic operations and also the method of synthetic division
based on the Remainder theorem and Homer's method each requires arithmetic operations for the
same evaluation. In this paper, we present a fast algorithm for evaluating simultaneously f (z 1

) for
all j = 0,1, · · ·, n - l in arithmetic operations, in total. To examine the efficiency of the algorithm,
both the standard straightforward and fast algorithms are implemented in MATLAB software to ob
tain numerical results for the evaluation of Chebyshev polynomials of the first kind at the Chebyshev
nodes. The CPU times taken by both algorithms are compared. The numerical experiment demon
strates that the fast algorithm is much faster than the straightforward algorithm when n � 128.

Key words: Fast Fourier Transform (FFT), Circulant Matrix-vector multiplication, Toeplitz Matrix
-Vector Multiplication, Vandermonde matrix Fast Polynomial Multiplication.

1. Introduction: The task of the evaluation of a polynomial at several arguments, referred in the
literature as the multipoint polynomial evaluation problem (MPE) plays a significant role in a vast
area of computational problems. These types of computations have been widely used in Engineer
ing, Physics, Medicine, Weather forecasting, and so on. We denote a generic univariate polynomial
of degree n -1 by f (z) = /0 + Ji z + /2 z 2 + ... + J,,_1 z n-l. In the present paper our work is
restricted to evaluate the polynomial f (z) at n arguments. To put it in another way, we have to
compute the collection:

{11-l }

�f,z/ ka0, ... ,-1

is equivalent to the computation of the following matrix-vector product:

/(z0) 1 11-I fo Zo Zo

J(z1) 1 11-l Ii where Z1 Z1

J(z,,_1) 1 n-1 . /,,-1 Zn-I Zn-I

459

n-1 T
1 Zo Zo

1 11-I
the matrix V= Z1 Z1 , called a Vandermonde matrix .

1 n-1
Zn-I Zn-I

The naive approach to solve this problem (MPE), the sequent computation of f (z) at all augments
z0, Zi,···, z11_1, may require a total cost of O(n3)

arithmetic operations. By Homer's rule or the
method of synthetic division, any univariate polynomial f of degree n - l can be evaluated at a
given evaluation argument in O(n) arithmetic operations by expressing the polynomial in the form
of:

f (z) = (... (f,,_1 z + f,,_2)z + J,,_3)z + fo (See [2]).

In order to sequentially evaluate the polynomial f at n arguments, we may require O(n 2)

arithmetic operations, in total ([2)]). However, these both approaches are prohibitively expensive in
terms of the number of arithmetic operations and hence computing time for problems of modest size.

Utilization of modem-day computers to solve problems including numerous applications has also
demanded efficient algorithms to compute problems in the domain of multipoint po}Y�omial evolu-
tion. The Discrete Fourier Transform (OFT) of a set of n input complex numbers tf �·} ._ ,,_1

J-0, ... ,n-l
yields the n output collection:

{tfj e-;,,J
1"}

_ k-0, ... 11-I

m O(n2)
arithmetic operations at most, wherei = H (See [3],[6]).

This task which may be considered as a special case of the MPE problem can be performed more ef
ficiently using the well-known fast Fourier transform (FFT) in O(n log, n) arithmetic operations
at most in the case where n is a power of 2. The materials foupd from th� work of A Borodin and
M Munro in 1975 ([2]) pointed out an exact algorithm of O�n log, 2 n} for the computation of
the MPE of size n . These authors used modular technique to develop this algorithm. J.R.Driscoll,
D.M.Healy Jr., and D. Rockmore ([4]) formulated a sophisticated algorithm of the same polynomial
computational complexity to compute an n - l degree polynomial over the complex field at n
complex arguments in 8 n log 2

2 n + 3n log 2 n optimal number of arithmetic operations. The
basic idea of this algorithm is to factorize the matrix transpose VT, of the Vandermonde matrix V
into product of sparse matrices having each Toeplitz blocks along its main diagonal so that the tech
nique of Circulant matrix vector product and the FFT can be applied to speed up the computation.

The main objective of this paper is to examine the efficiency of the algorithm developed in ([4]).
Our motivation behind studying this algorithm is to extend its idea to develop fast algorithms to

460

compute more efficiently discrete orthogonal polynomial transforms. For simplicity, we assume
that n is a power of 2 and we write log n instead orlog, n .

The present paper has the following structure: In section 2, we describe standard structured matri
ces and fast matrix -vector product algorithms for those matrices with computational complexities.
Section 3 provides the fast algorithm of the present paper, providing details about its computational
costs. Numerical results are presented in Section 4. Section 5 draws conclusions and discusses pos
sible extensions.

2. Fast Matrix -Vector Product: The product of a matrix and a vector results in many problems in
Engineering and Applied mathematics. For a matrix A of order n ,its matrix product Ai with an
arbitrary input vector x requires O(n2)

operation by the straight forward computation. For modest
types of matrices, the computational cost of the matrix -vector product becomes prohibitive and thus
yields computational inconvenience for practical purposes. We devote this section to present some
known structured matrix-vector products, namely, the Fourier matrix-vector product, the Circulant
matrix -vector product, and Toeplitz matrix-vector product which can be used to establish the fast
algorithm for the MPE ([10],[l]).
Definition 2.1: An Fourier matrix, denoted by , is defined to be the square matrix given by

1 1 1
1 OJ,

11-l
OJ

F= n

1 OJn-1 OJ(11-l)(11-I)

where OJ = e -i 2" 111 is a primitive n th root of the unity.

It can be more easily seen that the product of the Fourier matrix with any arbitrary column vector
of size yields the well-known discrete Fourier transform (DFT) , which can be performed more ef
ficiently using the fast Fourier transform (FFT) ([3],[6]). We summarize the materials found from
[3] in the following theorem: It is worthwhile to notice that the Fourier matrix is a unitary matrix

* * , that is F,1F,1 = 111
, where F,1 is the conjugate matrix of Fn, which is also a unitary matrix.

Theorem 2.2. The FFT and IFFT can each be done in O(n log n) arithmetic operations. A proof
of this can be found in [3].

Definition 2.3. An square matrix has the following form is called a circulant matrix.

C11-l

461
The circulant matrix processes constant element along the diagonals from top left to bottom right
and in fact, it can be easily seen that the circulant matrix can be spanned by the entities in the first
column.

Theorem 2.4. The circulant matrix can be diagonalzed by the Fourier matrix such that
C,, = F11D11F,,-1 .See the proof the theorem in [10].

2.5 Circulant matrix -vector product. Let :! = (x0, x1, • • ·, x11_1 Y be a vector of size . The stan
dard straightforward calculation of the matrix vector product C :! requires arithmetic operations.
The following FFT based technique needs at most arithmetic operations for the same.

Note that the Fourier matrix is a unitary matrix. To put it another way, where is the identity matrix
of order and is the conjugate transpose of.

1 1 1
-11-l

Here, 1 OJ OJ
F,, =

-n-1 -(11-1)(11-I)
1 (J) OJ

It should be noted that the circulant matrix vector product C x can be written as the cyclic convolu
tion of the sequences, and .That is to show,

11-l

c * x1 = Ix,,,c1_"'

m=O
Now by the Convolution theorem,

DFT(c * x1) = DFT(c0, c., · · ·, c,1_1)DFT(x0, x1, • • ·, x11_1) and this implies that

(c * x 1) = IDFT[DFT(c0, c., · · ·, c11_1)DFT(x0, x1, • • ·, x,,_1
)]

This concludes that the circulant matrix vector multiplication can be performed using only three
FFTs (one IFFT and two FFTs). Since each FFT needs arithmetic operations, the circulant matrix
vector multiplication can be done in arithmetic operations.

AJi:oritllm 2.6: Circulant matrix vector multiplication

Input:

Output:

Stages:

C = cir(co,Ci,· ··,cn-1), Y = (Yo,Y1, · ·,Y11-1 Y ·
�=Cy

1. Compute the FFT of the vector (Yo,Yi, · · ·, y11_1
), Yk = FFT(y0, Y1, • • • ,Y11_1).

2. Compute the FFT of the vector ck = FFT(co' C1 ' ... 'c,,_1).

462

3. for k = 0 to n -1

do Z k = Ck Yk ; point wise multiplication

enddo

4. z = TFFT(z)
Definition 2. 7. A Toeplitz matrix of order is defined to be the following matrix:

, where t_(-n+l), ... ,t_O, ... t_(n-1) are complex numbers.

A Toeplitz matrix can be spanned by it first column and its first row. Besides that, the entities of the
Toeplitz matrix are constant along the sub diagonals parallel to the main diagonal.

Toeplitz matrix vector multiplication. The standard straightforward calculation of the matrix
vector product T x requires arithmetic operations. The following theorem shows an FFT based
technique that may compute T ! in .

Theorem 2.8.The product of a Toeplitz matrix of order and a column vector of size can be per
formed in arithmetic operations ([IO]).

Proof :Let be a Toeplitz matrix of order and ! be a column vector of size .

Define the circulant matrix of order 2n as follows:
(Tn

C211 = Sn

where is a square matrix of order given by

0 t-n+l t.; to ti

..; 0 t_2 t _1 to
Sn:= T=

t1 t2 0 t-n+l t_,,+2

Also let y =
(�)

be a column vector of size , where O denotes the zero matrix.

463

Now we get

Now this concludes that the toeplitz matrix -vector multiplication can be done in arithmetic opera
tions.

It should be noticed only three FFTs of order each and one point-wise multiplications of sequence
of length are needed to perform the Toeplitz matrix-vector multiplication and that the total number
of arithmetic operations is equal to:

3(3(�n)
log2n)+ 2n = 9nlog2n + 2n.

Further this can be reduced to 9n log n + 1 n .That is, the computational complexity is O(n log n) .

Algorithm 2.9: Toeplitz matrix vector prodt1ct

Input: T = top(t_,i+1,
• • ·, t0, • • • ,t,1_1)

,

Y = (y0, Y1, • • ·, Y n-I Y Output: z = f
Stages: 1. Compute the FFT of u = (0,0, .. 0, Yo, y1, .. y11_1

); Yk = FFT(u)

3. for k = 0 to 2n - 1

end for

4. z = TFFT(Z)
Definition.2.10. A vandermonde matrix of order is defined to be []

1 1 1

Zn-I

, where z0, z1, ···,Zn-I are complex numbers.

n-1
zn-1

3. Multipoint Polynomial Evaluation: Let J(x) = /0 +fix+ f2x2 + ... + f11_1xn-I be age
neric univariate polynomial of degree n -1 defined in [x]. Let Z = {z0, z1, • • ·, z n-l} be set of
n complex numbers. Here we restrict our task to compute f at all the arguments in Z. That is,
we wish to compute the collection:

464

{,,_, } �J,x,'
,.0, ... ,-1.

Theorem 3.1.The task of evaluating the polynomial f at all the arguments in Z can be performed
in o(n log2 n) arithmetic operations.

Proof: We follow the proof in [4].

Now we see that:

f(zo)=fo + fizo +···+ fn_1z/-1

f(z1) = fo + fiz1 + · .. + r.»;'

This further can be written in the following matrix equation.

f(xo) 1 11-l fo Zo Zo
J(x1) 1 n-1 Ii Z1 Z1

f(xn-1) 1 n-l t., z11-1 zn-1

11-l T
1 Zo Zo 1 1 1

1 n-1 Zo Z1 z,,_1 Let V= Z1 Z1

1 n-1 n-1 n-1 (n-l)(n-1)
Zn-I Zn-I Zo Z1 ... z,,_1

Let f = (Jo, Ji , " , fn-1 Y ·
Now we see that the matrix V is the so-defined Vandermonde matrix and that the task of solving

the MPE problem is equivalent to the task of computing the matrix-vector product VT f . Let
n-1

M(z) = L f.z' .We shall calculate M(z) at each zi for i = 0,1, .. ·, n -1.
i=O

465

Define: m(i,J) (z) = \Z
-

zi(n,21))· "\Z
-

z(i+I)(nt21�J for i = 0,1, ··,log n. and for

j = 1,2, -Jog n , for example, if j = 1, i = 0,1 , then m(O,l)(z) = (z - z0
)·

• • (z - zn12_1)

and m(t,l) (z) = (z - zn12
)·

• • (z - zn-l).

Divide M(z) by m(o,i) (z) and by m(i,i) (z) seperately. Then, by the division algorithm, we get:

M(z) = q(o,i) (z)m(o,i) (z) + r(o,i) (z), M(z) = q(i,i) (z)m(i,i) + r(i,i) (z).

where r(o,l) (z), q (o.i) (z} are the remainder and the quotient when is divided by ,respectively and

so are r(i,i)(z},q(o,1/z) whenM(z) is divided by m(o,l)(z).

Next divide r(o,i) (z) by m(o,2) (z) and by m(i,2) (z), separately. Then we have:

r(o,i) (z) = q(o,2)m(o,z) (z)+ r(o,2) (z) and r(o,i) (z) = q(I,2)(z)m(i,2) (z)+ r(l,2) (z).

Also, divide r(i,t) (z) b; m(2,z) (z) and by m(J,Z) (z) ,separately. Then, we have:

r(i,i)(z) = q(z,2)m(2•2/z }+ r(1•2/z) and r(i.i)(z) = q(3,2)m(3,2)(z)+ r(3,2)(z)

We continue this procedure until we get r(o,k)
(z), r(t,k) (z), • · ·, r(n-l,k) (z). Also, it can be seen that:

M(z) = q(l,i)m(l,i/z)+ q(t,2)(z)mu.2/z)+ · · · + q(t,k-l)(z)m(l.k-i)(z)+ q((t,k))(z)m(l,k)(z)+ r(l,k)(z).

It should be noted that r(l,k) (z) = r(l,k) is constant (real or complex) and that:

M(z0)
r(O,k)

M(z1)
r(t,k) -

M(zn_i} r(n-1,k)

This mechanism can be interpreted in the following diagram:

466

M(z)

I
T(1,1)(z)

I
+- Level 1

+-- Levell

+---- Level (k-1)

T(n-i,1c)(z) .___ Level k

Figure I.Diagram for evaluating a polynomial M(z) at n = 2k points.

In this method, we find each remainder at all the levels instead of calculating M(z) at each
z O, z 1, • • ·, z n-l and the remainders at the bottom most level in the diagram (Level k) give the cor
responding values of M (z). Therefore, it is worthwhile to have an efficient method to calculate the
remainder r(z)and the quotient q(z)in the division algorithm

p(z) = q(z)m(z) + r(z),

where takes a form of: m(i,1/z) = {z - zi(,112j)), · · {z - z(i+I}(ni21�J

Suppose that the degree of p(z) is u -1, where u is a power of 2.

Then, the degree of is and the degree of is.

Now, we have

r(z) = p(z)-q(z)m(z) (*)

Let:

() 2 1t-1 P z = Po + P1Z + P2Z + + Pu-1Z

q(z) = qo + q1z + qzzz + + q�-1zu/2-1
2

r(z) = r + r1z + r2z2 + · ·· + r�1 zuli-1.
2

m(z) = m0 + m1z + m2z2 + ... + m!!zu/i
2

Then we get from (*) the following:

467

P!!.__1 -moq!!.__1 -m1q!!._2 -· .. -m�-2q1 -m!!.__2q0Po -moqo
2 2 2 2 2

ru
--2 P1 - moq1 - m1qo 2

ru qo0Po - moqo --!
2

Po mo 0 0 qo
Pi m1 qi

(1)
Pu mu m, mo qu
--! --1 --1 2 2 2

Also, we get from (*)

p -m q - .. ·-m q 0 ! 1 !!._� ! 0
2 2 2

- (2)
Pu-1 =m,«; 0

- --1
2 2

And from this we have:

Pu m" m1 qo - -
2 2

(3)
Pu-1 0 mu qu

- --1
2 2

Let mo 0

m1
A=

mu
--1
2

0 and

B=

0

-1

Here A is an upper triangular Toeplitz matrix and B is a non-singular lower triangular Toeplitz
matrix (since mm/i = 1).By combining and, we get,

468

Po

ro Po Pu -

=[Ii I P'!...._1
2

2

ru = Pu -ll 1-ll (5)
--2 --2 Pu-2 2 2 I Pu r. Pu
--1 --1 Pu-I 2
1 2

Pu-1

1 0
, where Ju/2 =

0 1

is the identity matrix of orderu/2.

Computational cost: It should be noticed that using Toeplitz matrix vector multiplication, the

Pu;2

product A
Pu-2

Pu-I

can be computed in 2(9u/2)1ogu + 2(u/2) = 9u logu + u.

Pu/2-1

Also the product I u/2

Po
needs u/2 multiplications.

Now the grand total number of arithmetic operations needed to obtain the column vector

is 9u logu + u + u/2 = 9u logu + 3u/2 .

Now let be the total number of operations required to carry out the entire problem of order n .

At level 1 of Figure 1 , the order problem is split into two sub- problem of order n/ 2 each and

hence the number of arithmetic operations required to compute r(o,i) (z) and r(I,l) (z) is equal to

469

2(9n log+ 3n/2) = $ n log n + 3n .Now we have the following recurrence:

T(n) = 2T(n/2)+ 2(9nlogn + 3n/2) = 2T(n/2)+� n logn + 3n
By iterating (6) ,we can show that

T(n) < B n log ' n + 3n log n , whenever n > 1.

That is, the matrix vector product V r f can be done in o(n log 2 n) arithmetic operations.

(6)

To put it another way, the polynomial M(z) = /0 + ftz + · · · + fn_1z"-1 can be computed at

all the points Z0, Z1, • • ·, Z n-l in O(n log ' n) arithmetic operations .

Al�orithm 3.2. Fast muWpoint evaluation of univariate polynomials

Input: n = 2k ,z = {z0, .. ,zn-t },f(z) = /0 + [1z + · ·· f"_1zn-l ,where Z;,[; E (C (i = 0, .. ,n-1)
Output: f(z0)f(zJ,··,f(zn-i).

Stages: r

O If n = 1, then return y = vr.f
1 K +- log-n
for k = K to I do

for j = 0 to 2 k - 1 do

r +-- j(n/2k)

s +-- U + 1)(n/2k) - 1

2 fork= 1:K
for j=L: zk

matrix generated by {o,o,"'', mo, mo, ml,""", mu/2-1} the

A (j. k) +-- elemen 0,0, · · ·, m0 in the first row and the element m0, m1, • • ·, mu12_1

are in the first column of the matrix.

Toeplitz matrix generated by {mu;2,
mu;2-1, · · · ,0,0, · · · ,0}

B (j, k) +-- the elements m1112,mu; 2_1,. .. ,m1 are in the first row and the

elements mu;2 ,0, · · · ,0 are in the first column of the matrix.

470

C(j, k) +- Inverse of B(j, k)

endfor(loopj)

end for (loop k)

3

r(j,k)(z) +- r0 (j, k) + r1 (j, k)z + ... ru-1 (j, k)zu-i

If k=I, then

for j=l:2

fo

fn1i-1 I

- - - +- Using TMVM
fnh

fn-1
endif

for k=l:K-1

for j=0:2k-l

for m=2j:2j+ 1

r0(j, k)

r0(m, k + 1)
r1(m, k + 1)

UsingTMVM

endfor (loop m)

endfor (loop j)

endfor(loop k)

471

:Note that fast polynomials multiplication (FPM): The multiplication of two polynomials of

degree n each can be performed efficiently in O(n log n) arithmetic operations using the FFT

(see [2] , p.86).Using this we can find all the coefficients m; of all the polynomials in the form of

m(· ·) (z) in Algorithm 3.
I,)

4, Numerical Experiment: Here both the naive algorithm and the optimized algorithm () were

implemented in MATLAB soft ware in order to compute the CPU time taken by each algorithm
to evaluate Chebyshev polynomials of first kind at the Chebyshe nodes. We calculated the times
taken for the Chebyshev polynomials of degrees of 8, 16, 32, 64, 128, 256, 512.

Example 4.1: Letx e [-1,1] .The Chebyshev polynomials of the first kind are the sequence of

polynomials defined by:

These polynomials also satisfy Tk (cos(}) = cos(cos kB) for all real 8. Chebyshev nodes are

N (j!C) . Q given by: x 1 = cos --;;- J = , : · · , n .

In the following table we summarize the times taken for each algorithm. The column labeled "n "
lists the length (=the number of coefficients) of a polynomial. The column tabled "t (Direct)" lists
the times taken to compute the polynomials using the direct method. The column labeled "t(Fast)"
lists the time taken to compute the polynomials using the fast algorithm.

Table 1
Times taken by the direct and fast algorithms for the Chebyshev polynomials.

N t(Direct t(Fast)
8 0 0

16 0.0156 0

32 0.4368 0.0780

64 2.059 0.0468

128 20.81 0.3744

256 156.4 2.778

512 1743 37.53

472

1
II

I g

- /

---- --- - - -- - • - -
Figure 2.Comparition of the fast algorithm with the direct method for evaluating the

Chebyshev polynomials.

5 Conclusion: We have presented an o(n log ' n) algorithm to evaluate simultaneously a univari
ate polynomial of degree n -1 at n arguments, where n is a power of 2 We implemented this
algorithm in MATLAB software to evaluate the Chebyshev polynomial of the first kind of various
degrees at the Chebyshev nodes to examine its efficiency. These experimental results have demon
strated that the fast algorithm presented here is much faster than the corresponding naive algorithm
when n � 128. The basic idea of this fast algorithm is to factor the transpose of the Vandermond
matrix into sparse matrices each including products of triangular Toeplitz sub blocks .along its di
agonal, so that the hybrid technique of FFT and the circulant matrix vector product can be applied
to reduce the number of operations. Hence, similar strtructured factorizations for the Vandermonde
matrix and the inverse of the Vandermonde matrix can be obtained so that we may solve problems
efficiently like interpolation problems and systems of linear equations with Vandermonde matrices
in o(n log2 n) arithmetic operations.

Despite particular cases like FFT, the fastest algorithms to compute U1e polynomials, reported in the
literature to date, require O(n log" n) arithmetic operations (in particular 8 n log2 n + 3n log n
at most in the present paper). Then the obvious question is whether the approach described in the
present paper can improve this bound for some or all types of univariate polynomial evaluation.
Commenting on this question and numerical stability of the presented algorithm will be the subject
of a forthcoming paper.

REFERENCES

[1] Alin Bostan and Eric Schost, On the complexities of multipoint evaluation and Interpolation.
Laboratoire STIX, Ecole polytechnique, 91128 Palaiseau, France.

[2] A.Borodin and I.Munro, The Computational Complexity of Algebraic and Numeric
lems. Elsevier, New York 197 5.

Prob-

473

[3] W.Cooly and John W. Tukey, An Algorithm for the Machine Calculation of Complex Fourier
Series, Math.Comput. 19-297-302, 1965.

[4] J.R. Driscoll, D.M .. Healy. JR, and D.Rockmore, Fast Discrete Polynomial Transforms with
Applications to Data Analysis for Distance Transitive Graphs.

[SJ I.Gohberg and V.Olshevsky, Fast algorithms with preprocessing for ma
trix - vector multiplication problems. School of Mathematical Sciences .Ray
mond and Beverly Sackler Faculty of Exact Sciences. Journal of Complexity (1994)

[6] Jams S. Walker, Fast Fourier Transforms, second edition,(studies in Advanced
ics), 0-8493- 7163-5, 1996.

Mathemat-

[7] Kenneth H.Rosen, Discrete Mathematics and its Applications, fifth edition, ISBN 0-07-119881-
4.

[8] Michael Nusken and Martin Ziegler, Fast Multipoint Evaluation of Bivariate Polynomials.
University of Paderborn, 33095 Paderborn, GERMANY.

[9] Robert M. Gray, Department of Electrical Engineering, Stanford University, USA,
and Circulant Matrices: A review.

Toeplitz

[10] Zhhui Tang, Ramani Duraiswami, and Nail Gumerov, Fast Algorithms to Compute Matrix
Vector Products for Pascal Matrices

	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561

