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Abstract 

Let f(z) = /0 + Ji z + · · · + r.; z''-1 be a pol.ynornia1 of degree n -1 with complex coefficients, 
Let S = {z0, z1, · • ·, zn-l }be a set of complex points. The straightforward method of evaluation of 
f (z 1) for all points in requires arithmetic operations and also the method of synthetic division 
based on the Remainder theorem and Homer's method each requires arithmetic operations for the 
same evaluation. In this paper, we present a fast algorithm for evaluating simultaneously f (z 1 

) for 
all j = 0,1, · · ·, n - l in arithmetic operations, in total. To examine the efficiency of the algorithm, 
both the standard straightforward and fast algorithms are implemented in MATLAB software to ob 
tain numerical results for the evaluation of Chebyshev polynomials of the first kind at the Chebyshev 
nodes. The CPU times taken by both algorithms are compared. The numerical experiment demon 
strates that the fast algorithm is much faster than the straightforward algorithm when n � 128. 

Key words: Fast Fourier Transform (FFT), Circulant Matrix-vector multiplication, Toeplitz Matrix 
-Vector Multiplication, Vandermonde matrix Fast Polynomial Multiplication. 

1. Introduction: The task of the evaluation of a polynomial at several arguments, referred in the 
literature as the multipoint polynomial evaluation problem (MPE) plays a significant role in a vast 
area of computational problems. These types of computations have been widely used in Engineer 
ing, Physics, Medicine, Weather forecasting, and so on. We denote a generic univariate polynomial 
of degree n -1 by f (z) = /0 + Ji z + /2 z 2 + ... + J,,_1 z n-l. In the present paper our work is 
restricted to evaluate the polynomial f (z) at n arguments. To put it in another way, we have to 
compute the collection: 

{11-l } 

�f,z/ ka0, ... ,-1 

is equivalent to the computation of the following matrix-vector product: 

/(z0) 1 11-I fo Zo Zo 

J(z1) 1 11-l Ii where Z1 Z1 

J(z,,_1) 1 n-1 . /,,-1 Zn-I Zn-I 
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n-1 T 
1 Zo Zo 

1 11-I 
the matrix V= Z1 Z1 , called a Vandermonde matrix . 

1 n-1 
Zn-I Zn-I 

The naive approach to solve this problem (MPE), the sequent computation of f (z) at all augments 
z0, Zi,···, z11_1, may require a total cost of O(n3) 

arithmetic operations. By Homer's rule or the 
method of synthetic division, any univariate polynomial f of degree n - l can be evaluated at a 
given evaluation argument in O(n) arithmetic operations by expressing the polynomial in the form 
of: 

f (z) = ( ... (f,,_1 z + f,,_2 )z + J,,_3 )z + fo (See [2]). 

In order to sequentially evaluate the polynomial f at n arguments, we may require O(n 2 ) 

arithmetic operations, in total ([2)]). However, these both approaches are prohibitively expensive in 
terms of the number of arithmetic operations and hence computing time for problems of modest size. 

Utilization of modem-day computers to solve problems including numerous applications has also 
demanded efficient algorithms to compute problems in the domain of multipoint po}Y�omial evolu- 
tion. The Discrete Fourier Transform (OFT) of a set of n input complex numbers tf �·} ._ ,,_1 

J-0, ... ,n-l 
yields the n output collection: 

{tfj e-;,,J 
1"} 

_ k-0, ... 11-I 

m O(n2) 
arithmetic operations at most, wherei = H ( See [3],[6]). 

This task which may be considered as a special case of the MPE problem can be performed more ef 
ficiently using the well-known fast Fourier transform (FFT) in O(n log, n) arithmetic operations 
at most in the case where n is a power of 2. The materials foupd from th� work of A Borodin and 
M Munro in 1975 ([2]) pointed out an exact algorithm of O�n log, 2 n} for the computation of 
the MPE of size n . These authors used modular technique to develop this algorithm. J.R.Driscoll, 
D.M.Healy Jr., and D. Rockmore ([ 4]) formulated a sophisticated algorithm of the same polynomial 
computational complexity to compute an n - l degree polynomial over the complex field at n 
complex arguments in 8 n log 2 

2 n + 3n log 2 n optimal number of arithmetic operations. The 
basic idea of this algorithm is to factorize the matrix transpose VT, of the Vandermonde matrix V 
into product of sparse matrices having each Toeplitz blocks along its main diagonal so that the tech 
nique of Circulant matrix vector product and the FFT can be applied to speed up the computation. 

The main objective of this paper is to examine the efficiency of the algorithm developed in ([ 4]). 
Our motivation behind studying this algorithm is to extend its idea to develop fast algorithms to 
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compute more efficiently discrete orthogonal polynomial transforms. For simplicity, we assume 
that n is a power of 2 and we write log n instead orlog, n . 

The present paper has the following structure: In section 2, we describe standard structured matri 
ces and fast matrix -vector product algorithms for those matrices with computational complexities. 
Section 3 provides the fast algorithm of the present paper, providing details about its computational 
costs. Numerical results are presented in Section 4. Section 5 draws conclusions and discusses pos 
sible extensions. 

2. Fast Matrix -Vector Product: The product of a matrix and a vector results in many problems in 
Engineering and Applied mathematics. For a matrix A of order n ,its matrix product Ai with an 
arbitrary input vector x requires O(n2) 

operation by the straight forward computation. For modest 
types of matrices, the computational cost of the matrix -vector product becomes prohibitive and thus 
yields computational inconvenience for practical purposes. We devote this section to present some 
known structured matrix-vector products, namely, the Fourier matrix-vector product, the Circulant 
matrix -vector product, and Toeplitz matrix-vector product which can be used to establish the fast 
algorithm for the MPE ([10],[l]). 
Definition 2.1: An Fourier matrix, denoted by , is defined to be the square matrix given by 

1 1 1 
1 OJ, 

11-l 
OJ 

F= n 

1 OJn-1 OJ(11-l)(11-I) 

where OJ = e -i 2" 111 is a primitive n th root of the unity. 

It can be more easily seen that the product of the Fourier matrix with any arbitrary column vector 
of size yields the well-known discrete Fourier transform (DFT) , which can be performed more ef 
ficiently using the fast Fourier transform (FFT) ([3],[6]). We summarize the materials found from 
[3] in the following theorem: It is worthwhile to notice that the Fourier matrix is a unitary matrix 

* * , that is F,1F,1 = 111 
, where F,1 is the conjugate matrix of Fn, which is also a unitary matrix. 

Theorem 2.2. The FFT and IFFT can each be done in O(n log n) arithmetic operations. A proof 
of this can be found in [ 3]. 

Definition 2.3. An square matrix has the following form is called a circulant matrix. 

C11-l 
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The circulant matrix processes constant element along the diagonals from top left to bottom right 
and in fact, it can be easily seen that the circulant matrix can be spanned by the entities in the first 
column. 

Theorem 2.4. The circulant matrix can be diagonalzed by the Fourier matrix such that 
C,, = F11D11F,,-1 .See the proof the theorem in [10]. 

2.5 Circulant matrix -vector product. Let :! = (x0, x1, • • ·, x11_1 Y be a vector of size . The stan 
dard straightforward calculation of the matrix vector product C :! requires arithmetic operations. 
The following FFT based technique needs at most arithmetic operations for the same. 

Note that the Fourier matrix is a unitary matrix. To put it another way, where is the identity matrix 
of order and is the conjugate transpose of. 

1 1 1 
-11-l 

Here, 1 OJ OJ 
F,, = 

-n-1 -(11-1)(11-I) 
1 (J) OJ 

It should be noted that the circulant matrix vector product C x can be written as the cyclic convolu 
tion of the sequences, and .That is to show, 

11-l 

c * x1 = Ix,,,c1_"' 

m=O 
Now by the Convolution theorem, 

DFT(c * x1) = DFT(c0, c., · · ·, c,1_1 )DFT(x0, x1, • • ·, x11_1) and this implies that 

(c * x 1) = IDFT[DFT(c0, c., · · ·, c11_1 )DFT(x0, x1, • • ·, x,,_1 
)] 

This concludes that the circulant matrix vector multiplication can be performed using only three 
FFTs (one IFFT and two FFTs). Since each FFT needs arithmetic operations, the circulant matrix 
vector multiplication can be done in arithmetic operations. 

AJi:oritllm 2.6: Circulant matrix vector multiplication 

Input: 

Output: 

Stages: 

C = cir(co,Ci,· ··,cn-1 ), Y = (Yo,Y1, · ·,Y11-1 Y · 
�=Cy 

1. Compute the FFT of the vector (Yo,Yi, · · ·, y11_1 
), Yk = FFT(y0, Y1, • • • ,Y11_1). 

2. Compute the FFT of the vector ck = FFT(co' C1 ' ... 'c,,_1). 
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3. for k = 0 to n -1 

do Z k = Ck Yk ; point wise multiplication 

enddo 

4. z = TFFT(z) 
Definition 2. 7. A Toeplitz matrix of order is defined to be the following matrix: 

, where t_(-n+l), ... ,t_O, ... t_(n-1) are complex numbers. 

A Toeplitz matrix can be spanned by it first column and its first row. Besides that, the entities of the 
Toeplitz matrix are constant along the sub diagonals parallel to the main diagonal. 

Toeplitz matrix vector multiplication. The standard straightforward calculation of the matrix 
vector product T x requires arithmetic operations. The following theorem shows an FFT based 
technique that may compute T ! in . 

Theorem 2.8.The product of a Toeplitz matrix of order and a column vector of size can be per 
formed in arithmetic operations ( [IO]). 

Proof :Let be a Toeplitz matrix of order and ! be a column vector of size . 

Define the circulant matrix of order 2n as follows: 
(Tn 

C211 = Sn 

where is a square matrix of order given by 

0 t-n+l t.; to ti 

..; 0 t_2 t _1 to 
Sn:= T= 

t1 t2 0 t-n+l t_,,+2 

Also let y = 
( �) 

be a column vector of size , where O denotes the zero matrix. 
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Now we get 

Now this concludes that the toeplitz matrix -vector multiplication can be done in arithmetic opera 
tions. 

It should be noticed only three FFTs of order each and one point-wise multiplications of sequence 
of length are needed to perform the Toeplitz matrix-vector multiplication and that the total number 
of arithmetic operations is equal to: 

3(3(�n) 
log2n )+ 2n = 9nlog2n + 2n. 

Further this can be reduced to 9n log n + 1 n .That is, the computational complexity is O(n log n) . 

Algorithm 2.9: Toeplitz matrix vector prodt1ct 

Input: T = top(t_,i+1, 
• • ·, t0, • • • ,t,1_1) 

, 

Y = (y0, Y1, • • ·, Y n-I Y Output: z = f 
Stages: 1. Compute the FFT of u = (0,0, .. 0, Yo, y1, .. y11_1 

); Yk = FFT(u) 

3. for k = 0 to 2n - 1 

end for 

4. z = TFFT(Z) 
Definition.2.10. A vandermonde matrix of order is defined to be [] 

1 1 1 

Zn-I 

, where z0, z1, ···,Zn-I are complex numbers. 

n-1 
zn-1 

3. Multipoint Polynomial Evaluation: Let J(x) = /0 +fix+ f2x2 + ... + f11_1xn-I be age 
neric univariate polynomial of degree n -1 defined in [x]. Let Z = {z0, z1, • • ·, z n-l} be set of 
n complex numbers. Here we restrict our task to compute f at all the arguments in Z. That is, 
we wish to compute the collection: 
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{,,_, } �J,x,' 
,.0, ... ,-1. 

Theorem 3.1.The task of evaluating the polynomial f at all the arguments in Z can be performed 
in o(n log2 n) arithmetic operations. 

Proof: We follow the proof in [4]. 

Now we see that: 

f(zo)=fo + fizo +···+ fn_1z/-1 

f(z1) = fo + fiz1 + · .. + r.»;' 

This further can be written in the following matrix equation. 

f(xo) 1 11-l fo Zo Zo 
J(x1) 1 n-1 Ii Z1 Z1 

f(xn-1) 1 n-l t., z11-1 zn-1 

11-l T 
1 Zo Zo 1 1 1 

1 n-1 Zo Z1 z,,_1 Let V= Z1 Z1 

1 n-1 n-1 n-1 (n-l)(n-1) 
Zn-I Zn-I Zo Z1 ... z,,_1 

Let f = (Jo, Ji , " , fn-1 Y · 
Now we see that the matrix V is the so-defined Vandermonde matrix and that the task of solving 

the MPE problem is equivalent to the task of computing the matrix-vector product VT f . Let 
n-1 

M(z) = L f.z' .We shall calculate M(z) at each zi for i = 0,1, .. ·, n -1. 
i=O 
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Define: m(i,J) (z) = \Z 
- 

zi(n,21))· "\Z 
- 

z(i+I)(nt21�J for i = 0,1, ··,log n. and for 

j = 1,2, -Jog n , for example, if j = 1, i = 0,1 , then m(O,l)(z) = (z - z0 
)· 

• • (z - zn12_1) 

and m(t,l) (z) = (z - zn12 
)· 

• • (z - zn-l). 

Divide M(z) by m(o,i) (z) and by m(i,i) (z) seperately. Then, by the division algorithm, we get: 

M(z) = q(o,i) (z )m(o,i) (z) + r(o,i) (z ), M(z) = q(i,i) (z )m(i,i) + r(i,i) (z ). 

where r(o,l) (z ), q (o.i) (z} are the remainder and the quotient when is divided by ,respectively and 

so are r(i,i)(z},q(o,1/z) whenM(z) is divided by m(o,l)(z). 

Next divide r(o,i) (z) by m(o,2) (z) and by m(i,2) (z), separately. Then we have: 

r(o,i) (z) = q(o,2)m(o,z) (z )+ r(o,2) (z) and r(o,i) (z) = q(I,2 )(z )m(i,2) (z )+ r(l,2) (z). 

Also, divide r(i,t) (z) b; m(2,z) (z) and by m(J,Z) (z) ,separately. Then, we have: 

r(i,i)(z) = q(z,2)m(2•2/z }+ r(1•2/z) and r(i.i)(z) = q(3,2)m(3,2)(z )+ r(3,2)(z) 

We continue this procedure until we get r(o,k) 
(z ), r(t,k) (z ), • · ·, r(n-l,k) (z ). Also, it can be seen that: 

M(z) = q(l,i)m(l,i/z )+ q(t,2)(z )mu.2/z )+ · · · + q(t,k-l)(z )m(l.k-i)(z )+ q((t,k))(z )m(l,k)(z )+ r(l,k)(z ). 

It should be noted that r(l,k) (z) = r(l,k) is constant (real or complex) and that: 

M(z0) 
r(O,k) 

M(z1) 
r(t,k) - 

M(zn_i} r(n-1,k) 

This mechanism can be interpreted in the following diagram: 
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M(z) 

I 
T(1,1)(z) 

I 
+- Level 1 

+-- Levell 

+---- Level (k-1) 

T(n-i,1c)(z) .___ Level k 

Figure I.Diagram for evaluating a polynomial M(z) at n = 2k points. 

In this method, we find each remainder at all the levels instead of calculating M(z) at each 
z O, z 1, • • ·, z n-l and the remainders at the bottom most level in the diagram (Level k) give the cor 
responding values of M ( z). Therefore, it is worthwhile to have an efficient method to calculate the 
remainder r(z )and the quotient q(z )in the division algorithm 

p(z) = q(z )m(z) + r(z), 

where takes a form of: m(i,1/z) = {z - zi(,112j)), · · {z - z(i+I}(ni21�J 

Suppose that the degree of p(z) is u -1, where u is a power of 2. 

Then, the degree of is and the degree of is. 

Now, we have 

r(z) = p(z )-q(z )m(z) (*) 

Let: 

( ) 2 1t-1 P z = Po + P1Z + P2Z + + Pu-1Z 

q(z) = qo + q1z + qzzz + + q�-1zu/2-1 
2 

r(z) = r + r1z + r2z2 + · ·· + r�1 zuli-1. 
2 

m(z) = m0 + m1z + m2z2 + ... + m!!zu/i 
2 

Then we get from (*) the following: 
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P!!.__1 -moq!!.__1 -m1q!!._2 -· .. -m�-2q1 -m!!.__2q0Po -moqo 
2 2 2 2 2 

ru 
--2 P1 - moq1 - m1qo 2 

ru qo0Po - moqo --! 
2 

Po mo 0 0 qo 
Pi m1 qi 

(1) 
Pu mu m, mo qu 
--! --1 --1 2 2 2 

Also, we get from (*) 

p -m q - .. ·-m q 0 ! 1 !!._� ! 0 
2 2 2 

- (2) 
Pu-1 =m,«; 0 

- --1 
2 2 

And from this we have: 

Pu m" m1 qo - - 
2 2 

(3) 
Pu-1 0 mu qu 

- --1 
2 2 

Let mo 0 

m1 
A= 

mu 
--1 
2 

0 and 

B= 

0 

-1 

Here A is an upper triangular Toeplitz matrix and B is a non-singular lower triangular Toeplitz 
matrix (since mm/i = 1 ).By combining and, we get, 
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Po 

ro Po Pu - 

=[Ii I P'!...._1 
2 

2 

ru = Pu -ll 1-ll (5) 
--2 --2 Pu-2 2 2 I Pu r. Pu 
--1 --1 Pu-I 2 
1 2 

Pu-1 

1 0 
, where Ju/2 = 

0 1 

is the identity matrix of orderu/2. 

Computational cost: It should be noticed that using Toeplitz matrix vector multiplication, the 

Pu;2 

product A 
Pu-2 

Pu-I 

can be computed in 2(9u/2)1ogu + 2(u/2) = 9u logu + u. 

Pu/2-1 

Also the product I u/2 

Po 
needs u/2 multiplications. 

Now the grand total number of arithmetic operations needed to obtain the column vector 

is 9u logu + u + u/2 = 9u logu + 3u/2 . 

Now let be the total number of operations required to carry out the entire problem of order n . 

At level 1 of Figure 1 , the order problem is split into two sub- problem of order n/ 2 each and 

hence the number of arithmetic operations required to compute r(o,i) (z) and r(I,l) (z) is equal to 
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2(9n log+ 3n/2) = $ n log n + 3n .Now we have the following recurrence: 

T(n) = 2T(n/2)+ 2(9nlogn + 3n/2) = 2T(n/2)+� n logn + 3n 
By iterating (6) ,we can show that 

T(n) < B n log ' n + 3n log n , whenever n > 1. 

That is, the matrix vector product V r f can be done in o(n log 2 n) arithmetic operations. 

(6) 

To put it another way, the polynomial M(z) = /0 + ftz + · · · + fn_1z"-1 can be computed at 

all the points Z0, Z1, • • ·, Z n-l in O(n log ' n) arithmetic operations . 

Al�orithm 3.2. Fast muWpoint evaluation of univariate polynomials 

Input: n = 2k ,z = {z0, .. ,zn-t },f(z) = /0 + [1z + · ·· f"_1zn-l ,where Z;,[; E (C (i = 0, .. ,n-1) 
Output: f(z0)f(zJ,··,f(zn-i). 

Stages: r 

O If n = 1, then return y = vr.f 
1 K +- log-n 
for k = K to I do 

for j = 0 to 2 k - 1 do 

r +-- j(n/2k) 

s +-- U + 1)(n/2k) - 1 

2 fork= 1:K 
for j=L: zk 

matrix generated by {o,o,"'', mo, mo, ml,""", mu/2-1} the 

A (j. k) +-- elemen 0,0, · · ·, m0 in the first row and the element m0, m1, • • ·, mu12_1 

are in the first column of the matrix. 

Toeplitz matrix generated by {mu;2, 
mu;2-1, · · · ,0,0, · · · ,0} 

B (j, k) +-- the elements m1112,mu; 2_1,. .. ,m1 are in the first row and the 

elements mu;2 ,0, · · · ,0 are in the first column of the matrix. 
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C(j, k) +- Inverse of B(j, k) 

endfor(loopj) 

end for (loop k) 

3 

r(j,k)(z) +- r0 (j, k) + r1 (j, k)z + ... ru-1 (j, k)zu-i 

If k=I, then 

for j=l:2 

fo 

fn1i-1 I 

- - - +- Using TMVM 
fnh 

fn-1 
endif 

for k=l:K-1 

for j=0:2k-l 

for m=2j:2j+ 1 

r0(j, k) 

r0(m, k + 1) 
r1(m, k + 1) 

UsingTMVM 

endfor (loop m) 

endfor (loop j) 

endfor( loop k) 
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:Note that fast polynomials multiplication (FPM): The multiplication of two polynomials of 

degree n each can be performed efficiently in O(n log n) arithmetic operations using the FFT 

(see [2] , p.86).Using this we can find all the coefficients m; of all the polynomials in the form of 

m(· ·) (z) in Algorithm 3. 
I,) 

4, Numerical Experiment: Here both the naive algorithm and the optimized algorithm () were 

implemented in MATLAB soft ware in order to compute the CPU time taken by each algorithm 
to evaluate Chebyshev polynomials of first kind at the Chebyshe nodes. We calculated the times 
taken for the Chebyshev polynomials of degrees of 8, 16, 32, 64, 128, 256, 512. 

Example 4.1: Letx e [-1,1] .The Chebyshev polynomials of the first kind are the sequence of 

polynomials defined by: 

These polynomials also satisfy Tk (cos(}) = cos( cos kB) for all real 8. Chebyshev nodes are 

N (j!C) . Q given by: x 1 = cos --;;- J = , : · · , n . 

In the following table we summarize the times taken for each algorithm. The column labeled "n " 
lists the length (=the number of coefficients) of a polynomial. The column tabled "t (Direct)" lists 
the times taken to compute the polynomials using the direct method. The column labeled "t(Fast)" 
lists the time taken to compute the polynomials using the fast algorithm. 

Table 1 
Times taken by the direct and fast algorithms for the Chebyshev polynomials. 

N t(Direct t(Fast) 
8 0 0 

16 0.0156 0 

32 0.4368 0.0780 

64 2.059 0.0468 

128 20.81 0.3744 

256 156.4 2.778 

512 1743 37.53 
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1 
II 

I g 

- / 

---- --- - - -- - • - - 
Figure 2.Comparition of the fast algorithm with the direct method for evaluating the 

Chebyshev polynomials. 

5 Conclusion: We have presented an o(n log ' n) algorithm to evaluate simultaneously a univari 
ate polynomial of degree n -1 at n arguments, where n is a power of 2 We implemented this 
algorithm in MATLAB software to evaluate the Chebyshev polynomial of the first kind of various 
degrees at the Chebyshev nodes to examine its efficiency. These experimental results have demon 
strated that the fast algorithm presented here is much faster than the corresponding naive algorithm 
when n � 128. The basic idea of this fast algorithm is to factor the transpose of the Vandermond 
matrix into sparse matrices each including products of triangular Toeplitz sub blocks .along its di 
agonal, so that the hybrid technique of FFT and the circulant matrix vector product can be applied 
to reduce the number of operations. Hence, similar strtructured factorizations for the Vandermonde 
matrix and the inverse of the Vandermonde matrix can be obtained so that we may solve problems 
efficiently like interpolation problems and systems of linear equations with Vandermonde matrices 
in o(n log2 n) arithmetic operations. 

Despite particular cases like FFT, the fastest algorithms to compute U1e polynomials, reported in the 
literature to date, require O(n log" n) arithmetic operations (in particular 8 n log2 n + 3n log n 
at most in the present paper). Then the obvious question is whether the approach described in the 
present paper can improve this bound for some or all types of univariate polynomial evaluation. 
Commenting on this question and numerical stability of the presented algorithm will be the subject 
of a forthcoming paper. 
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