
13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

336

Paper ID: 419

An Alternative Approach to Authenticate Subflows of Multipath

Transmission Control Protocol using an Application Level Key

Tharindu Wijethilake#, Kasun Gunawardana, Chamath Keppitiyagama and Kasun de Zoyza

 University of Colombo School of Computing, Sri Lanka

#tnb@ucsc.cmb.ac.lk

Abstract: Multipath Transmission Control

Protocol (MPTCP) is an extension to

Transmission Control Protocol (TCP)

proposed by the Internet Engineering Task

Force (IETF). The intention of MPTCP was to

use multiple network interfaces in a single

network connection simultaneously.

Researches have identified that there are a

considerable amount of security threats

related to the connections initiated by

MPTCP. In this research, we studied on the

security threats generated by sharing

authentication keys in the initial handshake

of the MPTCP in plain text format and

investigated the applicability of external keys

in authenticating sub-flows with minimum

modifications to the kernel and the socket

APIs. To pass external keys from user space

to kernel space, we used sin_zero padding in

TCP socket data structure. Through the

experiments we found that MPTCP sub-flows

can be authenticated and certain

vulnerabilities can be avoided with our

approach.

Key Words: MPTCP, Computer networks,

Linux kernel, Authentication keys

Introduction

TCP, the Transmission control protocol is

one of the major protocols in the transport

layer which was introduced in 1981 (Postel,

1981). The main objective of the TCP was to

achieve the reliability of the communication

channel between two hosts over a packet

switching network. With the advancement of

the technology, most of the modern devices

such as laptops, mobile phones, and tablet

PCs are having more than one network

interface, such that Ethernet port, WiFi,

cellular data connection like 4G/LTE and so

on. However, most of the time these devices

use only one network interface at any given

time, and hence, researchers investigated the

plausibility of employing the second network

interface in order to increase the throughput

and to provide redundant connectivity. To

achieve this, an extension to classical TCP

was introduced as Multipath TCP (MPTCP) in

2013 (Ford, Raiciu, Handley and

Bonaventure, 2013).

A. Multipath TCP

Currently, Multipath TCP kernel is available

for Linux operating systems, macOS,

Android, and Apple iOS which can be

installed separately. According to our

knowledge, only Apple iOS has implemented

MPTCP on their Siri voice assistant

application (Bonaventure, 2014). Multipath

TCP uses the normal TCP threeway

handshake method to create the connections

between two hosts. It does not change the

currently available TCP protocol stack and

the header format. All the data related to

MPTCP are sent by using the TCP “option”

field available in the TCP header.

To initiate the MPTCP connection between a

client and the server, the client sends the

normal TCP SYN message with the

MP_CAPABLE options included in the TCP

header. If the server is also configured with

MPTCP, it will reply to the client using

SYN/ACK with MP_CAPABLE. And finally, the

connection is established with the ACK

message from the client. In MPTCP these

connections are known as subflows. To

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

337

initiate an additional subflow, it has to send

another SYN packet to the server with

MP_JOIN option from the second network

interface as shown in Figure 1.

When sending the SYN+MP_CAPABLE

message at the beginning, the client sends a

key to the server in plain text, as the key of

the client. The server also sends a key with

the SYN/ACK+MP_CAPABLE message in

plain text as the key of the server. Finally,

with the ACK message, the client sends both

the keys to the server to confirm the

connection. These shared keys are used to

generate the HMAC, which will be later used

to authenticate the new sub-flows that would

be initialized between the two nodes

(Demaria, 2016). In any case, if one of the

hosts is not configured with MPTCP, it will

automatically change into the normal TCP

connection. So MPTCP is designed to be

backward compatible and independent from

the applications which are being executed on

the server.

If a client needs to create a new sub-flow with

the server, it will send a TCP SYN message to

the server with the MP_JOIN option using the

client’s second interface. In this case, the

client sends a token to the server to

authenticate itself. This token is a part of the

HMAC generated by using the keys shared in

the initial key exchange. After sharing the

HMACs of keys between the client and the

server, MPTCP will create a new sub-flow

between them as shown in Figure 1. Other

than that there is an option called ADD_ADDR

in MPTCP which can be used to advertise the

available interfaces of a host to other hosts.

B. The Goal

There are several security vulnerabilities

related to MPTCP connections. One of the

major vulnerabilities is exchanging the key in

plain text. A number of solutions has been

proposed by IEFT for this problem. Some of

the solutions were developed based on the

ideas proposed in the RFC7430 (Bagnulo et

al., 2015) and some are developed by

combining available security protocols.

Other than that, Paasch and Bonaventure,

2013 have proposed a different approach

where it uses external keys in authenticating

sub-flows. However, to implement that, the

existing socket API has to be modified.

Changing the existing socket API must be a

prudent and meticulous effort as it requires a

comprehensive restructuring of the current

implementation of the TCP. Therefore, in this

study, our goal is to explore an alternative

approach to use external keys in

authenticating subflows without modifying

the existing socket API.

Figure 1: MP_CAPABLE option and MP_JOIN option

Background and Literature Review

Two of the key benefits of MPTCP mentioned

in the RFC 6182 (Ford et al., 2011) are, to

increase the ability to recover the

connectivity in a connection failure without

failing the end hosts by using multiple paths

and to increase the efficiency of the

connections by using multiple paths.

Creating multiple sub-flows between two

hosts requires the authentication of one host

to the other. As mentioned in the section I,

the authentication mechanism (Ford, Raiciu,

Handley and Bonaventure, 2013) employs

plain text key exchange between two hosts

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

338

over a public network, which opens to many

security risks. If an attacker got access to

these keys, the attacker can create a new sub-

flow with the server and even can remove the

connection between with the legitimate

client and the server (Bagnulo, 2011).

A. Security Threats

The attackers in the context of MPTCP can be

categorized based on their location and their

actions (Bagnulo et al., 2015). The attacker

based on their location can be classify into

three. Those are, off the path attackers, p

artial time on path attackers and on path

attackers. Off path attacker is an attacker

who is not in the middle of the path of MPTCP

connection. Therefore, an off path attacker

cannot eavesdrop the packets exchanged in

the connection. The second group of

attackers is the partial time on path

attackers, who have access to the MPTCP

connection, but not for the entire period of

the connection. The third attacker is, on path

attackers, who are on the MPTCP connection

itself. That means they have access to one of

the subflows of the connection (Bagnulo et

al., 2015).

The attackers based on their actions can be

classified in to two, which are eavesdropper

and active attackers. Eavesdroppers collect

data from the connection while the active

attackers try to change the data on the

connection (Bagnulo et al., 2015).

Bagnulo et al., (2015), have explicitly

identified several security threats on MPTCP

connections. The first security threat is

ADD_ADDER attack which is a man in the

middle attack where the attacker can hijack

the MPTCP session. The next attack is the DoS

attack on MP_JOIN which the attacker sends

SYN+MP_JOIN packets to a host with a valid

token, then the host will open a connection.

There is a maximum number of half open

connections can be maintained by a host

according to the implementation. When that

number is exceeded, the host becomes

exhausted.

SYN flooding amplification is a denial of

service attack (Eddy, 2017). The attackers

send several SYN packets to a port and this

make a number of half open connections

which will eventually exhaust the

connection.

Eavesdropper in initial key exchange is one

of the main security issues in MPTCP. In this

attack, the attacker collects the keys by

listening to the initial key exchange and after

that, the attacker can create new subflows

using the captured keys (Bagnulo, 2011).

B. Current Status

For the identified security threats, several

high-level solutions have been proposed in

RFC 7430 (Bagnulo et al., 2015). Some of the

researches based on these are as below.

 1) Asymmetric key exchange: Without using

plain text keys as in the original MPTCP, Kim

and Choi, (2016) have proposed to use the

Elliptic curve Deffie-Helman key exchange

(Blake-Wilson et al., 2006) in the initial key

exchange of MPTCP.

2) MPTCPsec: MPTCP secure (MPTCPsec)

was proposed to satisfy two main objectives,

which are detecting and recovering from

packet injection attacks and to protect

application level data (Jadin, Tihon, Pereira

and Bonaventure, 2017).

3) ADD_ADDR2: To overcome the

vulnerability in ADD_ADDR, the ADD_ADDR2

option (Demaria, 2016) was proposed.

4) Using external keys to secure MPTCP:

Exchanging keys in plain text is one of the

main security issues in MPTCP. One of the

solutions was proposed for this problem was

to use external keys such as SSL or TLS keys

to authenticate the MPTCP connection. These

SSL or TLS keys are already negotiated in the

application layer. The proposed solution

(Paasch and Bonaventure, 2013) has

suggested a mechanism to transfer the

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

339

application layer keys to the MPTCP layer by

using two socket options. One is

MPTCP_ENABLE_APP_KEY, which is used to

inform the MPTCP protocol that the

application level keys are used to

authenticate the connection, and

MPTCP_KEY is used to provide the

application level key to the MPTCP layer.

Apart from the aforementioned research

work, several other attempts are also

available in literature. Using hash chains

(Díez, Bagnulo, Valera and Vidal, 2020), using

SSL (Paasch and Bonaventure, 2013) and

tcpcrypt (Bittau et al., 2018) are some of such

work.

The research work presented in this paper

was inspired by the idea suggested by Paasch

and Bonaventure, (2013). In their proposal,

they have suggested employing external keys

to authenticate the subflows of MPTCP such

that external keys are taken from the

application layer and transferred to the

kernel level. In order to achieve that, they

have suggested to include two new socket

options, in turn modifies the existing socket

API. In this research, our goal is to explore an

alternative mechanism to achieve the same

objective as (Paasch and Bonaventure, 2013)

without altering the existing socket API.

Methodology

As explained in section II, our goal is to obtain

key information from the application level

and deliver it to the kernel level without

introducing new socket options. Theses key

information is used to authenticate the

subflows generated by the MPTCP protocol.

In the first sub-flow, MPTCP uses

MP_CAPABLE option to check whether both

the hosts are compatible with MPTCP and

share the keys which are need to

authenticate the next subflows. From the

second subflow onwards MPTCP uses

MP_JOIN option to authenticate and join the

new subflow to the same connection.

In this work, there are two assumptions to be

made as given below.

• Both the hosts have to be agreed on the

external keys before initiating the second

subflow.

• The external keys have to be secure.

Figure 2. Kernel level, User level and External keys

Figure 2 shows the abstract picture of the

solution proposed by this research. The

external key means the shared secret

between two hosts which was obtained from

the application level. As shown in Figure 2,

this key has to be transferred from the

application level to the kernel level. After

that, the key has to be used in the kernel level

to authenticate the subflows. When the

external key is available in the kernel level, it

can be used to generate the authenticating

material. The authenticating material has to

be transferred to the server end for the

authentication of the newly generated

subflow.

A. Transfer application level information to

kernel level

To transfer application level key to the kernel

level, several avenues were explored.

1) Using the proc file system: Proc is a pseudo

file system in the Linux operating systems

that can be accessed from /proc (proc(5) -

Linux manual page, 2020). This is an

interface to the kernel data structure and

most of the files in the proc directory are

read-only. Some of them are writable and can

be used to modify kernel variables. With this

approach, a new proc directory has to be

created in the /proc directory and the key

value has to be written in the newly created

proc directory. Then this value has to be

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

340

accessed by the kernel file. There were

several overheads were identified when

incorporating proc file system to transfer

application level information to the kernel

level. One of the issues is, the key value from

the application level has to be written to a file

in a /proc directly before invoking a TCP

socket. That is an overhead for the normal

procedure of invoking TCP socket. The other

issue is, the value in the proc file has to be

read by the kernel using a function and then

assigned to the kernel variable. It cannot be

directly assigning to the kernel variable value

by the proc file system itself. Therefore when

the kernel initiating a TCP connection, it has

to read proc files and assign the values to the

kernel variables.

2) Netlink Sockets: Netlink (netlink(7) -

Linux manual page, 2020) is a Linux kernel

interface which can be used to communicate

between kernel space and the user space, and

between different user processes also.

3) Using sin_zero of TCP socket : sin_zero is a

char array in the sockaddr in data structure

used in TCP sockets. This data structure

contains the necessary information to create

a TCP connection between two hosts.

Protocol, port number, and address are some

of the information contain in the sockaddr in

data structure. Other than that there is

another char array called sin_zero which is

used as padding (struct sockaddr_in, struct

in_addr, 2020). This space is not used by the

sockets when creating connections.

Therefore, theoretically, this space can be

used to transfer data from user space to the

kernel space, if it is not dropped when the

information is transferred from user space to

kernel space. This was further explored to

identify the behavior of the sin_zero variable

and tracked the functions which transfer the

data from user space to kernel space.

Compared to other solutions, using the

sin_zero easier to send data from the

application level. Char value can be easily

copied to the sin_zero character array when

creating the TCP socket. Therefore no need to

customize the socket APIs. But the challenge

was to retrieve the data from the kernel level.

Theoretically, the sin_zero data should be

received by the kernel space, if it was not

dropped by the system calls. We have used

inet functions of af_inet.c to retrieve the data

from the sin_zero in the kernel kevel.

Implementation was straight forward when

using the inet functions of af_inet.c.

Therefore the necessary functions were

identified and modified to retrieve the data

from sin_zero. Key value send from the

application level was directly assigned to a

kernel variable with this method.

B. Backward Compatibility

The backward compatibility is one of the

important features in MPTCP. This means if

the host machines are not compatible with

MPTCP, it will automatically change into the

original TCP connection. Therefore these

solutions also should be backward

compatible. This means if any of the

machines are not configured with the

proposed solution, it should use the normal

MPTCP authentication mechanism.

To achieve this requirement, slight

modifications to the code has to be done. It

has to check whether the sin zero value is set

from the user level or not. If the value is set,

it has to use to the proposed solution, and if

not it has to use the original MPTCP

authentication mechanism.

C. Key Transferring Mechanism

The userspace key was transferred to the

kernel space by using the sin_zero character

array of the sockaddr in data structure of TCP

socket and the data was obtained by the

kernel space using inet functions of at inet.c

with minimum modifications to the existing

kernel implementations. Figure 3 shows the

key transferring mechanism.

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

341

Evaluation and Results

For the evaluation, the modified MPTCP

kernel was installed on Ubuntu 16.04 LTS

and several experiments were done. All these

experiments were conducted in virtual

environment.

Figure 3: Key Transferring Mechanism

A. Experimental Setup

TCP client and server sockets were

implemented using the C programming

language and executed on two virtual

machines connected via the virtual network

of Virtual box. The server is sending a string

of data to the client and the client display that

information in the terminal. Network packets

were captured in the server machine and

were analyzed using Wireshark.

In order to prove the concept of

authenticating newly generated subflows

using external keys, the authentication

material was generated by XORing the token

value generated by MPTCP and the external

key that has obtained from the application

level. This authentication material was sent

to the server using the available token space

in the SYN+MP_JOIN packet and the

authentication material was validated in the

server end.

B. Evaluation

To evaluate the proposed solution three

main experiments were designed as below.

In the first experiment, it has to check

whether the connection establishes when

both ends use the same key. In this case,

latter sub-flows should be authenticated, and

data should be transmitted through all the

sub-flows.

In the second experiment, it has to use

different keys in both ends and check

whether latter sub-flows establish or not.

Since the keys are not identical, in this

experiment, latter sub-flows should not be

authenticated. Hence, it is expected to have

only the first sub-flow of the connection.

Finally, it has to check whether the solution

is backward compatible when sin_zero is not

assigned any value. In that case, it is expected

to use the original MPTCP authentication

mechanism and establish the connections.

C. Results

The experiments were conducted as mention

in the above section and the results are as

follows.

1) Using the same key on both server end and

client end:

As mentioned in the experiment 1, when

using the same key on both the server and

the client ends, the MPTCP connection should

start properly. It has to authenticate the

second sub-flow using the key obtain from

the application level and should start the

second sub-flow. The connection was

established using TCP sockets from both the

server and the client machines. Figure 4

shows the packets send from interface eth0

of the client and Figure 5 shows the packets

send from interface eth1 of the client. By

analyzing the packets, it can come to a

conclusion that both the interfaces has

successfully completed the TCP three-way

handshake and established the MPTCP

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

342

connection on both the interfaces

successfully.

Figure 4: Packets captured from eth0 interface

Figure 5: Packets captured from eth1 interface

2) Using the different keys on server end and

client end:

As explained in the experiment 2, two

different keys were used in server end and

client end when starting the sockets, and the

Figure 6 shows the captured and filtered

packets send from the client’s eth0 interface.

Figure 7 shows the packets sent from the

eth1 interface of the client.

According to the captured packets, it is clear

that the first connection was successfully

established with the server because the TCP

three ways handshake was successfully

completed. But when observing Figure 7, it is

clear that the TCP three ways handshake has

stopped at the SYN ACK stage. Protocol fails

to complete the authentication process

because of having two different keys in the

server end and the client end. Therefore, it

has dropped the connection. Which means

when a malicious party attempting to join

without having the shared application key, it

cannot create the latter sub-flows.

Figure 6: Packets captured from eth0 interface

Figure 7: Packets captured from eth1 interface

Therefore the main goal of the research was

successfully achieved. This means without

having the correct application level

information, the second subflow cannot be

initiated.

3) Backward compatibility: As explained in

experiment 3, the sockets have set without

assigning any value to sin_zero variable.

Figure 8 shows the packets captured on both

the eth0 and eth1 interfaces of the client and

it has successfully established the MPTCP

connection. Which shows that it has used

normal MPTCP. Therefore the solution is

backward compatible if both the client and

server does not use application level keys to

authenticate the sub-flows.

Conclusion and Future Work

Use of external keys in authentication was

proposed by C. Paasch and O. Bonaventure

(Bagnulo et al., 2015) where they propose to

modify existing Socket API. Since it is a

redesign and a major restructuring to

current implementation, we explored an

alternative approach to authenticate sub-

flows of MPTCP connection using external

keys.

In this study, we experimented the

completeness of our approach in three facets.

First, with a common external key, two

parties were able to authenticate and

establish sub-flows successfully. Second, it

was shown that a party that does not possess

the common external key could not establish

a sub-flow due to failed authentication.

Finally, when an external key is not involved,

the method returns to the normal MPTCP

authentication, and hence our approach is

backward compatible. With these three

facets, we have demonstrated the

completeness of the proposed approach.

Therefore, it can be used to authenticate sub-

flows and eliminate the vulnerabilities in

classical MPTCP to certain extent.

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

343

Figure 8: Packets captured from eth0 and eth1 interfaces
with no key

As for future work, it has to develop a

mechanism to generate a secure

authentication material and proper method

to transfer the authentication material from

the client machine to the server machine.

References

Postel, J., 1981. RFC 793 - Transmission Control

Protocol. [online] Tools.ietf.org. Available at:

<https://tools.ietf.org/html/rfc793> [Accessed

26 June 2019].

Ford, A., Raiciu, C., Handley, M. and Bonaventure,

O., 2013. RFC 6824 - TCP Extensions For

Multipath Operation With Multiple Addresses.

[online] Tools.ietf.org. Available at:

<https://tools.ietf.org/html/rfc6824> [Accessed

26 June 2019].

Bonaventure, O., 2014. Observing Siri : The

Three-Way Handshake — MPTCP. [online]

Blog.multipath-tcp.org. Available at:

<http://blog.multipath-

tcp.org/blog/html/2014/02/24/observing_siri.h

tml> [Accessed 27 June 2019].

Demaria, F., 2016. Security Evaluation Of

Multipath TCP. [online] Diva-portal.org. Available

at: <http://www.diva-

portal.org/smash/get/diva2:934158/FULLTEXT

01.pdf> [Accessed 27 June 2019].

Ford, A., Raiciu, C., Handley, M., Barre, S. and

Iyengar, J., 2011. Architectural Guidelines For

Multipath TCP Development. [online] Rfc-

editor.org. Available at: <https://www.rfc-

editor.org/info/rfc6182> [Accessed 27 June

2019].

Bagnulo, M., 2011. RFC 6181 - Threat Analysis For

TCP Extensions For Multipath Operation With

Multiple Addresses. [online] Tools.ietf.org.

Available at: <https://tools.ietf.org/html/rfc618

1> [Accessed 30 June 2019].

Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O.

and Raiciu, C., 2015. Analysis Of Residual Threats

And Possible Fixes For Multipath TCP (MPTCP).

[online] Rfc-editor.org. Available at: <https://

www.rfc-editor.org/info/rfc7430> [Accessed 30

June 2019].

Jadin, M., Tihon, G., Pereira, O. and Bonaventure,

O., 2017. Securing Multipath TCP:Design &

Implementation. [online] Dial.uclouvain.be.

Available at: <https://dial.uclouvain.be/pr/

boreal/object/boreal:184252> [Accessed 30 June

2019].

Paasch, C. and Bonaventure, O., 2013. Securing

The Multipath TCP Handshake With External

Keys. [online] Tools.ietf.org. Available at:

<https://tools.ietf.org/id/draft-paasch-mptcp-

ssl-00.html> [Accessed 30 June 2019].

Díez, J., Bagnulo, M., Valera, F. and Vidal, I.,

2020. Security For Multipath TCP: A Constructive

Approach.

Kim, Y. and Choi, K., 2016. Draft-Kim-Mptcp-

Semptcp-00. [online] Datatracker.ietf.org.

Available at: <https://datatracker.ietf.org/doc/h

tml/draft-kim-mptcp-semptcp> [Accessed 30

June 2019].

Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C.

and Moeller, B., 2006. RFC 4492 - Elliptic Curve

Cryptography (ECC) Cipher Suites For Transport

Layer Security (TLS). [online] Tools.ietf.org.

Available at: <https://tools.ietf.org/html/rfc44

92> [Accessed 5 July 2019].

McGrew, D., 2008. RFC 5116 - An Interface And

Algorithms For Authenticated Encryption.

[online] Datatracker.ietf.org. Available at:

<https://datatracker.ietf.org/doc/rfc5116/>

[Accessed 5 July 2019].

Eddy, W., 2017. RFC 4987 - TCP SYN Flooding

Attacks And Common Mitigations. [online]

Tools.ietf.org. Available at: <https://tools.ie

tf.org/html/rfc4987> [Accessed 5 July 2019].

Bittau, A., Giffin, D., Handley, M., Mazieres, D.,

Slack, Q. and Smith, E., 2018. Draft-Ietf-Tcpinc-

Tcpcrypt-10 - Cryptographic Protection Of TCP

Streams (Tcpcrypt). [online] Datatracker.ietf.org.

Available at:

13th International Research Conference

General Sir John Kotelawala Defence University

Computing Sessions

344

<https://datatracker.ietf.org/doc/draft-ietf-

tcpinc-tcpcrypt/10/> [Accessed 5 July 2019].

Bittau, A., Giffin, D., Handley, M., Mazieres, D. and

Smith, E., 2017. Draft-Ietf-Tcpinc-Tcpeno-18 -

TCP-ENO: Encryption Negotiation Option.

[online] Tools.ietf.org. Available at: <https://

tools.ietf.org/html/draft-ietf-tcpinc-tcpeno-18>

[Accessed 5 July 2019].

Dierks, T. and Rescorla, E., 2018. RFC 5246 - The

Transport Layer Security (TLS) Protocol Version

1.2. [online] Tools.ietf.org. Available at: <https://

tools.ietf.org/html/rfc5246> [Accessed 5 July

2019].

Wireshark.org. 2020. Wireshark · Go Deep..

[online] Available at: <https://www.wiresha

rk.org> [Accessed 20 July 2019].

Man7.org. 2020. Proc(5) - Linux Manual Page.

[online] Available at: <http://man7.org/lin

ux/man-pages/man5/proc.5.html> [Accessed 8

July 2019].

Man7.org. 2020. Netlink(7) - Linux Manual Page.

[online] Available at: <http://man7.org/linu

x/man-pages/man7/netlink.7.html> [Accessed 8

July 2019].

Gta.ufrj.br. 2020. Struct Sockaddr_In, Struct

In_Addr. [online] Available at:

<https://www.gta.ufrj.br/ensino/eel878/socket

s/sockaddr_inman.html> [Accessed 10 July

2019].

Author Biographies

Tharindu Wijethilake is an

assistant lecturer at the

University of Colombo School

of Computing. He obtained

Master’s degree in Computer Science from

the UCSC. His research interests include

computer networks, network security and

information system security.

Kasun Gunawardana is a senior

lecture at the University of

Colombo School of Computing.

He obtained his PhD from the

Monash University. His

research interests are Machine Learning,

Cyber Security, and Digital Forensics.

Chamath Keppitiagama

obtained his PhD from the

University of British Colombia

and he is a senior lecturer at the

University of Colombo School of

Computing. His research interests are is

Computer Networks, Distributed Systems

and Operating Systems.

Kasun de Zoysa is a senior

lecturer at the University of

Colomobo School of

Computing. He obtained his

Phd from the Stockholm His

research interests includes Information

Security, Sensor Networks and Embedded

Systems.

