Colorimetric sensor based on L-Cysteine functionalized silver nanoparticles for cadmium (II) ion detection

AADT Abeysinghe^{1#}, KCML Elvitigala², ACA Jayasundera^{2,3} and NMS Sirimuthu^{1,4}

¹Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka ²Postgraduate Institute of Science, University of Peradeniya, Sri Lanka ³Department of Chemistry, Faculty of Science, University of Peradeniya, Sri Lanka ⁴Center for Kidney Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka #dharaniabeysinghe94@gmail.com

Cadmium is an element used in many industries. Overuse of agrochemicals and industrial waste have resulted in an increase in Cd²⁺ levels in soil and water systems causing serious bio-hazards. Therefore, the development of sensitive detection methods for trace cadmium are important. In this study, a facile and selective method for the detection of divalent cadmium ions using L-cysteine functionalized silver nanoparticles (AgNPs) is introduced. AgNPs were synthesized by reduction of silver nitrate using hydroxylamine hydrochloride. Synthesized AgNPs were then surface functionalized with L-cysteine which is an amino acid. L-cysteine contains a thiol group which displays high affinity for Ag surfaces and a carboxyl group which can interact with the surrounding, or in this case, to act as a sensor for Cd2+ ions. Alterations in morphology and size of nanoparticles due to functionalization were confirmed by UV-Vis spectral changes. The presence of Cd²⁺ induces the aggregation of L-cysteine functionalized AgNPs as they are linked together by "carboxylate-Cd2+-carboxylate" coordinative couplings, resulting in a colour change from yellow to deep orange. The concentration of Cd²⁺ could be monitored by the colorimetric response obtained by UV-Vis spectroscopy or even by naked eye and the detection limit is as low as 1 ppm. This novel detection principle showed selectivity towards Mg²⁺, Ca²⁺ and Cd²⁺ ions. Therefore, it may be successfully applied to determine Cd²⁺ in Mg²⁺ and Ca²⁺ in waters.

Keywords: cadmium, silver nanoparticles, L-cysteine, UV-Vis spectroscopy