
A	Comparison	of	Delta-Communication	Technologies	and	Techniques	
	

NR	Dissanayake1#	and	GKA	Dias1	
1University	of	Colombo	School	of	Computing,	Colombo	7,	Sri	Lanka	

#nalakadmnr@gmail.com	
	

Abstract—	Delta-Communication	can	be	seen	as	the	power	
of	 Rich	 Internet	 Applications,	 and	 there	 are	 different	
Techniques	and	Technologies	available	for	the	development	
of	Delta-Communication,	which	should	be	selected	carefully	
into	 the	 Rich	 Internet	 Application	 development.	 Enough	
discussions	are	not	available,	which	 compare	and	 contrast	
these	 Delta-Communication	 development	 Techniques	 and	
Technologies	 towards	 supporting	 decision	 making	 of	
selecting	 them.	 This	 paper	 provides	 an	 overview	 of	 the	
contemporary	Techniques	and	Technologies	available	for	the	
Delta-Communication	development,	 contextually	 compares	
them	aligning	to	some	selected	criteria,	and	finally	discusses	
some	facts	to	be	considered	when	selecting	them	for	the	Rich	
Internet	Application	development.	A	literature	survey	on	the	
Delta-Communication	 development	 Technologies	 and	
Techniques	was	conducted,	which	was	followed	by	a	series	
of	 experiments	 towards	 getting	 the	 empirical	 evidence	 for	
the	 comparison.	 During	 the	 contextual	 comparison,	 the	
Simple	Pull	Delta-Communication	was	identified	as	the	least	
complex	 technique	 and	 the	 Websocket	 was	 noted	 as	 the	
highest	complex	technology.	
	
Keywords—	 Delta-Communication,	 Rich	 Internet	
Applications,	Techniques	and	Technologies	
	

I.	INTRODUCTION	
Rich	Internet	Applications	(RIAs)	have	become	popular	with	
their	increased	user	experience	delivered	through	rich	GUIs	
and	 faster	 responses.	 The	 key	 concept	 behind	 the	 fast	
responses	is	the	Delta-Communication	(DC),	which	enables	
the	 communication	 of	 necessary	 data	 between	 the	 client	
and	 the	 server	 components,	 in	 either	 synchronous	 or	
asynchronous	modes,	 supporting	 both	 data-pull	 and	 push	
modes	 (Dissanayake	 &	 Dias,	 2017).	 There	 are	 various	
Technologies	and	Techniques	(TTs)	available	for	developing	
the	DC	 in	 RIAs.	 These	 TTs	 have	 been	 already	 discussed	 in	
different	 forums,	 and	 also	many	 tutorials	 are	 available	 to	
demonstrate	 the	 development	 of	 them.	 However,	 proper	
comparisons	 of	 these	 TTs	 are	 not	 available	 towards	
supporting	decision	making	in	selecting	these	TTs	for	the	RIA	
development.	
	
This	 paper	 gathers	 contemporarily	 used	 DC	 development	
TTs,	provides	an	overview	of	 their	 features,	 then	compare	
and	 contrast	 them	 aligning	 to	 the	 facts:	 communication	

mode,	 complexity,	 ease	 of	 development,	 ease	 of	
maintenance	 and	 modifiability,	 and	 scalability.	 The	 paper	
also	 discusses	 some	 facts	 to	 be	 considered,	when	making	
decisions	for	selecting	the	DC	TTs	for	the	RIA	development.	
	
For	this	study,	a	literature	survey	was	conducted	focusing	on	
identifying	the	available	DC	development	TTs,	their	features,	
and	development	details.	Parallel	to	the	literature	survey,	a	
series	 of	 experiments	 was	 conducted	 towards	 getting	
empirical	 evidence	on	 the	 identified	DC	development	 TTs.	
During	 the	experiments,	prototypes	were	developed	using	
HTML,	 JavaScript,	 jQuery,	 PHP,	 and	 MySQL;	 and	
development	 process	 and	 the	 prototypes	 were	 examined	
focusing	 on	 the	 complexity,	 ease	 of	
development/maintenance/modifiability,	 and	 scalability	
factors.	
	
Section	II	of	this	paper	provides	the	background	of	the	DC,	
stating	 some	 history	 and	 the	 definitions	 for	 the	 DC	 and	
related	 basics.	 Section	 III	 provides	 an	 overview	 of	 the	
contemporarily	 utilized	 DC	 TTs.	 Section	 IV	 delivers	 the	
contextualized	 comparison	 of	 the	 DC	 TTs	 discussing	 the	
results	of	the	comparison.	Based	on	the	knowledge	gained	
through	the	comparison,	section	V	discusses	some	facts	to	
be	 considered	 when	 selecting	 the	 DC	 TTs	 for	 the	 RIA	
development.	 Finally,	 section	 VI	 concludes	 the	 paper	
specifying	 the	 future	 applications	 of	 the	 knowledge	
delivered	in	this	paper.	
	

II.	BACKGROUND	
This	section	provides	some	history	of	 the	DC	concept,	and	
also	states	definitions	for	the	DC	and	related	basics	towards	
getting	an	adequate	understanding	of	the	concept	of	the	DC	
before	the	comparison	of	the	development	TTs.	
	
A. History	of	Delta-Communication	
Microsoft	was	working	on	a	technology	named	XMLHTTP	in	
their	Exchange	2000	project	(Hopmann,	n.d.),	and	it	was	first	
introduced	 to	 the	 world	 as	 an	 ActiveX	 control	 in	 Internet	
Explorer	5.0	in	March	1999	(Dutta,	2006)	(Smith,	2006);	and	
later	it	was	called	the	XMLHttpRequest	(XHR)	object,	which	
has	an	Application	Programme	Interface	(API)	 in	JavaScript	
(JS).	
	



In	2005,	Jesse	James	Garrett	from	Adaptive	Path	coined	the	
name	AJAX,	introducing	the	first	JS	based	DC	technique	for	
the	web	applications,	utilizing	the	XHR	object	(Garrett,	2005).	
This	technique	became	popular	and	took	the	traditional	web	
applications	to	a	whole	new	era	called	Web2,	which	 is	the	
era	of	the	RIAs.	Later	W3C	acquired	the	control	of	the	XHR	
object	 and	 released	 the	 first	 specification	 on	 2006	 (W3C,	
2006).	Since	then	the	term	AJAX	has	become	another	name	
for	the	RIAs,	where	even	some	developers	refer	the	RIAs	as	
AJAX	applications.	
	
AJAX	 can	 be	 seen	 as	 the	 beginning	 of	 the	 JS	 based	 RIA	
development	 approach,	 and	 it	 became	 a	 major	
breakthrough	 in	 the	 web	 development	 area	 (Salva	 &	
Laurencot,	 2009).	 After	 its	 introduction,	 developers	 were	
learning	how	to	use	AJAX	to	create	desktop-like	GUIs	in	the	
web	 applications	 such	 as	 Google	 Maps;	 and	 later	 they	
subsequently	 used	 AJAX	 even	 to	 create	 entire	 enterprise	
RIAs	(Lawton,	2008).	Using	the	JS’s	ability	to	manipulate	the	
Document	Object	Model	(DOM)	in	HTML	documents,	AJAX	
achieves	and	enhances	the	interoperability	capability	of	the	
web	applications	(Salva	&	Laurencot,	2009).		
	
It	should	be	noted	that	the	AJAX	itself	is	not	a	technology,	it	
is	a	technique;	and	the	technology	behind	AJAX	is	the	XHR	
object	 with	 its	 JS	 API.	 The	 AJAX	 is	 a	 data-pull	 technique,	
employing	 the	 traditional	 request-response	 model.	
Combining	 HTML	 and	 CSS	 with	 JS,	 AJAX	 has	 become	 a	
powerful	 tool	 in	 RIA	 development,	 providing	 the	
fundamental	implementation	of	the	DC.	
	
The	 main	 characteristics	 of	 AJAX	 and	 other	 DC	 TTs	
introduced	after	AJAX,	are	discussed	in	section	III.	
	
B. Definitions	 for	Delta-Communication	 and	 Related	 Basic	

Concepts	
Before	discussing	the	DC	TTs,	it	is	important	to	understand	
what	 the	 DC	 is,	 its	 characteristics,	 and	 also	 related	 basic	
concepts.	
	
The	main	features	of	the	DC	are	the	capability	of	processing	
in	 the	 background	 and	 then	 performing	 partial	 page	
rendering	to	display	the	results	on	the	GUI	(Dissanayake	&	
Dias,	 2017).	 The	 communication	 is	 done	 faster	due	 to	 the	
smaller	 set	 of	 data	 communicated	 compared	 to	 the	
traditional	 web	 communications.	 Considering	 these	 facts,	
the	 DC	 is	 defined	 as:	 “Delta-Communication	 is	 the	 rich	
communication	model	used	by	the	rich	features	of	the	RIAs,	
for	 client-component(s)	 to	 communicate	 with	 the	 server-
component(s),	to	exchange	only	the	needful	dataset	–	for	a	
particular	 feature	executed	at	 the	 time	–	which	 is	 smaller,	
compared	to	the	size	of	the	request/response	of	traditional	

communication.	Since	the	size	of	the	dataset	communicated	
is	smaller,	the	communication	completes	faster,	eliminating	
the	 work-wait	 pattern.	 The	 processing	 of	 the	 response	 is	
done	by	the	client-components	in	the	background,	therefore	
the	 page	 refreshes	 are	 eliminated	 and	 replaced	 by	 partial	
page	 rendering	 to	update	 the	 content	 of	 the	GUI	with	 the	
results	 of	 the	 response.	 The	 user	 experience	 can	 be	
determined	by	the	implementation	of	the	feature,	 in	either	
blocking	 (synchronous)	 or	 non-blocking	 (asynchronous)	
modes”	(Dissanayake	&	Dias,	2017).	
	
Simple	 Pull	 Delta-Communication	 (SPDC)	 is	 the	 simplest	
abstract	 implementation	 of	 the	 DC,	 and	 it	 is	 defined	 as:	
“Simple	 Pull	 Delta-Communication	 is	 the	 basic	 abstract	
Delta-Communication	 technique,	 based	 on	 the	 data-pull	
mode.	 It	 describes	 the	 simplest	 form	 of	 data-pull	 Delta-
Communication,	based	on	the	request-response	model;	and	
this	 technique	 is	 technology	 independent”	 (Dissanayake	 &	
Dias,	2017).	
	
Aligning	to	the	definition	of	the	SPDC,	AJAX	technique	can	be	
seen	as	JS	implementation	of	the	SPDC,	which	is	limited	to	
the	 browser	 based	 applications.	 The	 term	 AJAX	 expresses	
some	flaws,	and	it	is	outdated	with	regards	to	the	latest	API	
version	of	the	XHR	object	(Dissanayake	&	Dias,	2017).	Due	to	
the	evolution	of	the	XHR	object,	the	technical	scope	of	the	
AJAX	 has	 been	 expanded	 in	 terms	 of	 both	 XML	 and	
Asynchronous	aspects.	Based	on	these	facts,	considering	the	
outdated	and	limited	impression	of	the	term	“AJAX”,	it	can	
be	replaced	by	the	term	“JavaScript-based	Simple	Pull	Delta-
Communication”	(JS-SPDC)	(Dissanayake	&	Dias,	2017).	The	
term	 JS-SPCS	 indicates	 that	 it	 utilizes	 the	 SPDC	 technique,	
and	developed	using	JS.	
	

III.	TECHNOLOGIES	AND	TECHNIQUES	FOR	THE	DELTA-
COMMUNICATION	

After	the	introduction	of	AJAX/XHR,	the	concept	of	the	DC	
had	been	used	in	some	other	TTs,	and	each	TT	is	associated	
with	 a	 set	 of	 pros	 and	 cons.	 These	 DC	 TTs	 can	 be	mainly	
classified	under	data-pull	and	data-push	modes,	where	the	
data-pull	is	based	on	the	request-response	model,	which	the	
client	requests	and	pull	the	data	from	the	server;	and	in	the	
data-push,	 the	 server	 sends	 data	 to	 the	 client	 without	 a	
request.	This	section	provides	an	overview	of	the	available	
DC	TTs,	indicating	their	main	features.	In-depth	discussions	
of	the	specifications	of	these	TTs	are	intentionally	kept	out	
of	 the	 scope	of	 this	paper.	 Instead,	 the	 focus	 is	 to	 classify	
them	for	a	better	understanding	of	their	usage,	to	be	utilized	
in	the	comparison	given	in	the	next	section.	
	
	
	



A. AJAX/JS-SPDC	
As	discussed	before,	 the	AJAX	can	be	seen	as	the	simplest	
implementation	 of	 the	 DC.	 It	 is	 based	 on	 SPDC,	 works	 in	
data-pull	mode,	and	the	complexity	is	comparatively	lower	
than	 the	 other	 DC	 TTs.	 The	 main	 limitation	 of	 the	 SPDC	
technique	 is	 that	 it	 does	 not	 support	 data-push	 mode;	
therefore,	 it	 is	 not	 suitable	 for	 real-time	 data	
communication	 as	 in	 publisher-subscriber	 model	 or	 any	
other	data-push	models.		
	
Several	 techniques	had	been	 introduced	 to	 simulate	data-
push	 using	 SPDC;	 some	 of	 them	 –	 like	 polling	 and	 long-
polling	–	use	the	same	XHR	object,	thus	also	called	reverse-
AJAX.		
	
B. Polling	(Carbou,	2011)	
In	polling,	data-push	is	simulated	by	sending	automatic	XHR	
requests	 to	 the	 server	periodically,	 receiving	 the	 response	
for	the	frequent	requests,	and	updating	the	GUI,	without	the	
users’	explicit	requests.	There	is	an	overhead	of	developing	
periodical	 requests	 sending	and	 responses	handling.	 If	 the	
frequency	of	the	requesting	is	low,	then	the	server	updates	
will	 not	 be	 received	 by	 the	 client	 in	 real	 time.	 To	 get	 the	
updates	in	real	time	the	frequency	of	the	automatic	request	
sending	needs	to	be	higher,	but	then	the	network	overhead	
will	also	be	higher.	 In	 the	cases	of	where	the	requests	are	
returned	 without	 updates,	 the	 resources	 for	 processing	
them	are	wasted.	Addressing	 these	weaknesses	of	polling,	
the	Comet	techniques	had	been	introduced.	
	
C. Comet	(Carbou,	2011)	
Comet	 is	 an	 umbrella	 term,	 which	 covers	 Streaming	 and	
Long	 Polling.	 In	 Comet	 techniques,	 unlike	 polling,	 the	
request	is	held	by	the	server	till	there	are	updates	to	be	sent	
back	 to	 the	 client.	 In	 the	 case	 of	 timeouts,	 the	 request	 is	
terminated,	 and	 the	 client	 can	 send	 a	 fresh	 request.	 This	
technique	reduces	the	frequency	of	the	requests,	thus,	also	
reduces	the	overhead	on	the	network	compared	to	polling.	
	
1)	 Streaming:	 Under	 streaming,	 there	 are	 two	
implementation	techniques:	Hidden	iFrame,	and	Multi-part	
XHR.	In	former	technique,	JS	scripts	are	pushed	to	the	client,	
and	in	 later	technique,	a	multi-part	response	is	written	via	
the	same	connection,	which	the	request	was	sent.	
	
2)	Long	Polling:	Long	polling	uses	the	pure	SPDC	technique	
as	 in	AJAX	and	polling,	which	holds	 the	 request	 for	 longer	
time.	Compared	to	streaming,	this	technique	can	be	seen	as	
evolved	and	effective.	
	
	
	

D. Server	Sent	Events	(Hickson,	2015)	
On	 2015,	 a	 true	 data-push	 protocol	 named	 Server	 Sent	
Events	 (SSE)	was	 introduced,	which	 is	 unidirectional,	 from	
the	server	to	the	client.	However,	 it	did	not	become	much	
popular.	Compared	to	data-push	simulation	techniques,	the	
complexity	is	lower,	and	the	development	and	modifiability	
are	 easier	 since	 the	 development	 overhead	 for	 data-push	
simulation	as	in	polling	or	long	polling	is	not	needed.	
	
E. WebSocket	(Fette,	2011)	
An	advanced	bi-directional	DC	protocol	named	WebSocket	
(WS)	was	introduced	in	2011,	which	supports	both	data-pull	
and	data-push	modes.	WS	helps	 to	 reduce	 the	number	of	
request-response	pairs	in	the	network	compared	to	polling,	
and	the	header	size	of	the	WS	is	smaller	than	HTTP,	which	
leads	 to	 increase	 the	 scalability	 by	 addressing	 the	 C10K	
problem	(Kegel,	2014)	compared	 to	 the	other	DC	TTs.	The	
WS	gained	the	attraction	of	the	web	engineers,	however,	the	
complexity	of	WS	applications	is	higher.	
		

IV.	COMPARISON	OF	SOME	PROPERTIES	OF	DC	TTS	
Table	 1	 contains	 the	 analysis	 of	 the	 contextualized	
comparison	 of	 some	 selected	 properties	 of	 the	 DC	
development	 TTs.	 The	 meaning	 of	 the	 symbols	 used	 to	
denote	the	values	are	as	follows.	Note	that	these	values	are	
comparative	to	each	other,	within	the	context.	
	

• (++)	–	Higher	
• (+)	–	High	
• (-)	–	Less	
• (--)	–	Lesser	

	
The	 factor	 “Core”	 indicates	 the	 abstract	 technique	 or	 the	
technology	 used	 in	 the	 core	 of	 the	 technique	 or	 the	
technology.	The	mode	explains	whether	its	data-pull,	push,	
or	simulating	either	push	or	pull.	The	data-push	simulating	
TTs	(which	are	actually	working	on	data-pull	mode)	use	the	
SPDC	as	their	core	technique,	where	SSE	and	WS	use	their	
own	protocols.	
	
The	 complexity	 is	 determined	 by	 the	 comparative	
complexity	 of	 the	 DC	 implementation,	 considering	 the	
number	of	components	needed	for	the	development	of	the	
communication	components.	 SPDC	 is	 the	 simplest	 form	of	
DC,	hence	can	be	considered	as	the	least	complex	technique.	
As	the	extended	versions	of	the	SPDC,	the	TTs	such	as	Polling	
and	 Long-polling	 can	 be	 considered	 as	 much	 complex.	
Though	 the	 SSE	 is	 a	 data-push	 technology,	 since	 it	 is	
unidirectional,	the	complexity	can	be	considered	as	similar	
to	SPDC.		
	



Table	1.	Comparison	of	some	features	of	DC	TTs	

	 JS-
SPDC	 Polling	 Streaming	 Long	

Polling	 SSE	 WS	

Core	 SPDC	 SPDC	
SPDC	/	
hidden	
iFrame	

SPDC	 SSE	
protocol	

WS	
protocol	

Mode	 Pull	 Push	
simulation	

Push	
simulation	

Push	
simulation	 Push	 Pull	and	

Push	
Complexity	 --	 +	 +	 +	 -	 ++	
Easiness	of	
Development	 ++	 -	 -	 -	 +	 --	
Easiness	of	
Maintenance	/	
Modifiability	

++	 -	 -	 -	 +	 --	

Scalability	 +	 --	 -	 +	 +	 ++	
	
However,	the	SSE	does	not	need	additional	components	for	
simulating	like	in	polling	or	comet,	thus	can	be	seen	as	less	
complex	compared	to	them.	As	a	bidirectional	technology,	
the	 complexity	 of	 the	 WS	 can	 be	 seen	 as	 the	 highest.	
Additionally,	 WS	 based	 development	 requires	 additional	
code	 and	 components	 for	WS	 server	 implementation	 and	
event	 handling,	 which	 makes	 the	 development	 is	 much	
complex.	
	
The	 complexity	 directly	 affects	 the	 easiness	 of	 developing	
the	 DC,	 and	 also	 the	 maintenance	 and	 modifiability	
properties	 of	 the	 system.	 As	 the	 simplest	 DC	 technique,	
SPDC	 provides	 the	 easiest	 development	 experience,	
compared	 to	 the	 other	 TTs,	 where	 WS	 offers	 the	 least	
easiness	as	the	much	complex	bi-directional	DC	technology.	
Note	 that	 this	 is	 the	comparative	easiness	of	developing	a	
single	 DC	 feature,	 not	 the	 actual	 easiness	 of	 the	
development	 of	 the	 entire	 system.	 The	 comparative	
easiness	 of	 the	 maintenance	 and	 modifiability	 properties	
could	be	a	similar	to	the	easiness	of	the	initial	development.	
	
For	 the	 scalability	 property,	 the	 scalability	 of	 the	 system	
towards	 real-time	 communication	 based	 on	 publisher-
subscriber	or	similar	model	is	considered.	For	such	scenarios,	
WS	offers	the	capacity	to	provide	the	best	scalable	solution,	
addressing	 the	 C10k	 issue	 (Kegel,	 2014).	 JS-SPDC	 has	 no	
mechanism	for	higher	scalable	development;	however,	note	
that	if	real-time	updates	are	not	needed	and	if	the	frequency	
of	 the	network	utilization	 is	 less,	 JS-SPDC	can	also	provide	
higher	scalability.	With	the	frequent	redundant	requests	and	
responses,	polling	shows	the	lowest	scalability.	Long	polling	
and	SSE	provides	moderate	scalability,	and	considering	the	
higher	 size	 of	 the	 data	 communicated	 the	 scalability	 of	
streaming	can	be	considered	lower	that	long	polling	and	SSE.	

V.	FACTS	TO	CONSIDER	IN	DECISION	MAKING	OF	SELECTING	TTS	FOR	
RIAS	DEVELOPMENT	

Several	important	facts	to	deliberate	when	making	decisions	
about	 selecting	 TTs	 for	 the	 implementation	 of	 DC	 are	
discussed	below	(Domenig,	n.d.).	
	
Stakeholders’	constraints:	Stakeholders	of	the	system	may	
have	 technological	 constraints	 such	 as	 operating	 systems,	
servers,	database	management	systems,	etc.,	based	on	their	
available	infrastructures	and	resources.	The	selection	of	the	
DC	development	TTs	may	need	to	align	to	such	constraints	
since	 most	 DC	 developments	 are	 based	 on	
frameworks/libraries/plug-ins.	 For	 example,	 if	 there	 is	 a	
requirement	for	WS	and	the	stakeholder	needs	a	JAVA	based	
system,	 a	 suitable	 JAVA	 based	 framework	 for	 WS	
development	should	be	considered.	
	
Compatibility:	The	compatibility	of	 the	TTs	selected	 for	all	
the	 client-components,	 server-components,	 and	 DC	
components	 is	 really	 important.	 Selection	 of	 a	 TT	 for	 one	
component	 may	 affect	 the	 TTs	 of	 other	 components,	
therefore	may	introduce	additional	learning	curves,	and	also	
may	 introduce	 limitations	 for	 selection	 of	 TTs	 for	 other	
components.	For	example,	if	WS	is	selected	for	DC,	for	both	
server	 and	 client	 components,	 additional	
frameworks/libraries	might	be	needed,	and	they	should	be	
compatible	with	each	other.	
	
Scalability:	 The	 size	 of	 the	 target	 user	 population	 and	
number	of	concurrent	users	(approximate)	are	the	facts	to	
consider	when	determining	the	scalability.	Scalability	plays	a	
significant	 role	 when	 selecting	 TTs	 for	 client-components	
and	DC.	If	a	higher	scalability	is	needed,	it	is	recommended	
to	select	WS,	regardless	its	complexity.	



Real-time	 updates:	 If	 real-time	 updates	 are	 needed,	 it	 is	
wise	to	select	the	DC	TT	by	also	considering	the	scalability.	
However,	 to	 get	 the	 true	 power	 of	 the	 real-time	 data	
communication,	 WS	 can	 be	 seen	 as	 the	 best	 option.	
Furthermore,	 suitable	 data	 formats	 like	 JSON	 should	 be	
considered	to	get	the	maximum	support	for	real-time	critical	
systems	(Dissanayake,	et	al.,	2015).		
	
Development,	 maintenance,	 and	 modifiability:	 The	
easiness	of	not	only	 in	 the	 initial	development,	but	also	 in	
maintenance	 and	 future	modifications	may	 also	 take	 into	
account.	 Table	 1	 contains	 the	 easiness	 in	 development,	
maintenance,	and	modifiability.	Correct	identification	of	the	
scalability	requirements	is	essential,	before	considering	the	
maintenance	and	modification	aspects.	
	

VI.	CONCLUSION	AND	FUTURE	WORK	
The	paper	has	given	an	overview	of	 the	 contemporary	DC	
development	 TTs,	 and	 then	 has	 done	 a	 contextualized	
comparison	 aligning	 to	 the	 facts:	 communication	 mode,	
complexity,	 easiness	 of	 development,	 easiness	 of	
maintenance	 and	 modifiability,	 and	 scalability.	 It	 was	
identified	 that	 the	 AJAX/JS-SPDC	 is	 the	 simplest	
implementation	 of	 the	 DC,	which	 incorporates	 the	 lowest	
complexity;	however,	it	lacks	in	scalability.	JS-SPDC	is	limited	
to	 data-pull,	 thus	 it	 does	 not	 support	 data-push.	 The	WS	
covers	 the	 limitations	 of	 the	 other	 DC	 TTs	 like	 scalability,	
support	 for	 both	 data	 pull	 and	 push.	 However,	 the	
complexity	 of	 WS	 is	 seen	 as	 the	 highest	 among	 DC	
development	TTs.	
	
Aligning	to	this	comparison,	the	paper	has	discussed	some	
facts	 to	 be	 considered	 in	 the	 decision	making	 of	 selecting	
proper	 DC	 development	 TTs	 into	 RIA	 development:	
stakeholders’	constraints,	compatibility,	scalability,	need	for	
real-time	 updates,	 and	 the	 easiness	 in	
development/maintenance/modifiability.	
	
In	 future,	we	expect	to	exploit	 the	knowledge	delivered	 in	
this	paper	to	introduce	a	taxonomy	for	the	DC	development	
TTs	 for	 RIAs.	 Then	 we	 hope	 to	 extend	 that	 taxonomy	 to	
introduce	 a	 complete	 set	 of	 taxonomies	 for	 RIA	
development	 TTs	 aligning	 to	 the	 architectural	 elements:	
Components	and	Connectors.	
	

REFERENCES	
Carbou,	M.,	2011.	Reverse	Ajax,	Part	1:	Introduction	to	Comet,	s.l.:	
IBM.	

Dissanayake,	N.	R.,	De	Silva,	D.	&	Dias,	K.,	2015.	A	Comparison	of	
the	 Efficiency	 of	 Using	 HTML	 over	 XML	 and	 JSON	 for	 the	

Asynchronous	 Communication	 in	 Rich	 Internet	 Applications.	
Rathmalana,	Sri	Lanka,	s.n.	

Dissanayake,	 N.	 R.	 &	 Dias,	 K.,	 2017.	 Delta	 Communication:	 The	
Power	of	 the	Rich	 Internet	Applications	 [Accepted].	 International	
Journal	of	Future	Computer	and	Communication	(IJFCC).	

Domenig,	M.,	n.d.	Rich	 Internet	Applications	and	AJAX	-	Selecting	
the	 best	 product.	 [Online]		
Available	at:	http://www.javalobby.org/articles/ajax-ria-overview/	
[Accessed	02	June	2014].	

Dutta,	 S.,	 2006.	 Native	 XMLHTTPRequest	 object.	 [Online]		
Available	 at:	
http://blogs.msdn.com/b/ie/archive/2006/01/23/516393.aspx	
[Accessed	02	11	2015].	

Fette,	 I.,	2011.	The	WebSocket	Protocol,	s.l.:	 Internet	Engineering	
Task	Force.	

Garrett,	 J.	 J.,	 2005.	Ajax:	 A	 New	 Approach	 to	Web	 Applications.	
[Online]		
Available	 at:	 http://www.adaptivepath.com/ideas/ajax-new-
approach-web-applications	

Hickson,	 I.,	 2015.	 Server-Sent	 Events.	 [Online]		
Available	 at:	 http://www.w3.org/TR/eventsource/	
[Accessed	15	May	2015].	

Hopmann,	 A.,	 n.d.	 The	 story	 of	 XMLHTTP.	 [Online]		
Available	 at:	 http://www.alexhopmann.com/xmlhttp.htm	
[Accessed	02	11	2015].	

Kegel,	 D.,	 2014.	 The	 C10K	 problem.	 [Online]		
Available	 at:	 http://www.kegel.com/c10k.html	
[Accessed	20	04	2015].	

Lawton,	G.,	 2008.	New	Ways	 to	Build	Rich	 Internet	Applications.	
Computer,	August,	41(8),	pp.	10	-	12.	

Salva,	S.	&	Laurencot,	P.,	2009.	Automatic	Ajax	application	testing.	
Venice,	s.n.,	pp.	229	-	234.	

Smith,	 K.,	 2006.	 Simplifying	 Ajax-Style	 Web	 Development.	
Computer,	May,	pp.	98-101.	

W3C,	 2006.	 The	 XMLHttpRequest	 Object.	 [Online]		
Available	 at:	 http://www.w3org/TR/2006/WD-XMLHttpRequest-
20060405	
[Accessed	10	05	2015].	

	

	
	


