
Conceptual	Approach	Towards	Stateful	Computation	Offloading	in	
Resource	Constraint	Android	Devices	

			

P	Vekneswaran1#	and	NR	Dissanayake1	
	

1	Informatics	Institute	of	Technology,	No	56,	Ramakrishna	Road,	Colombo	6,	Sri	Lanka	
#	prathieshna.2016281@iit.ac.lk	

	
Abstract—	Cyber	Foraging	 is	an	approach	 to	 resolve	 the	
performance	 and	 resource	 limitations	 of	 small	 portable	
hand-held	devices,	through	offloading	heavy	processes	to	
nearby	stationary	devices	called	Surrogate	Devices,	which	
have	more	 computation	 capabilities.	 The	way	 the	 Cyber	
Foraging	is	mostly	tackled	by	invoking	a	remote	method	in	
the	 Surrogate	 Device	 –	 which	 contains	 the	 application	
related	information	as	a	pre-requisite	–	at	the	time	of	local	
invocation,	 in	 a	 state-less	 manner.	 This	 limits	 the	
possibilities	where	the	Cyber	Foraging	can	be	used	in	state-
full	context,	which	can	provide	maintenance	of	state	which	
will	 help	 the	developer	 to	 transmit	 state	of	 objects	 used	
inside	 the	offload	 candidate	 so	 it	won’t	 differ	 from	 local	
execution	 and	 remote	 execution.	 In	 order	 to	 use	 in	 a	
stateful	 manner,	 researchers	 have	 used	 a	 virtualisation	
approach,	which	is	a	resource	consuming	approach.	As	an	
alternative,	we	propose	a	conceptual	solution	to	transmit	
state	 from	 mobile	 platform	 to	 the	 surrogate	 platform,	
without	having	to	deploy	a	mobile	OS	virtual	machine	into	
the	 surrogate	 environment.	 The	 concept	 will	 address	 all	
the	 drawbacks	 of	 virtualisation	 and	 provide	 the	 similar	
benefits	at	a	lower	resource	cost	in	the	Surrogate	end.		
	
Keywords—Cyber	Foraging,	Distributed	Computing,	
State-full	Offloading	

	
I.	INTRODUCTION	

This	section	gives	a	brief	background	to	the	domain	cyber	
foraging,	specifying	the	problem	we	are	focusing	on	and	
the	motivation	towards	proposing	a	conceptual	approach	
towards	 stateful	 computation	 offloading	 and	 the	
methodology	used	for	the	research.	Followed	by	existing	
work,	proposed	approaches,	 limitations,	conclusions	and	
future	work.			

A. Background	
	
1)	 Cyber	 Foraging:	 Since	 then	 there	 has	 been	 various	
attempts	 to	 fulfil	 Mark	 Weiser’s	 vision	 (Weiser,	 1991);	
however,	 these	 mobile	 devices	 are	 coupled	 with	 some	
limitations	 like	 limited	 processing	 power	 and	 battery	
standby.	Cyber	Foraging,	which	was	a	term	coined	by	M.	
Satyanarayanan,	 is	an	attempt	to	offload	process	from	a	
portable	resource	constraint	platforms	of	mobile	devices	
to	a	stationary	resource	rich	platform,	called	a	surrogate.	
Following	his	approach	there	have	been	various	attempts	

towards	a	perfect	 cyber	 foraging	 solution,	which	 is	both	
efficient	and	developer	friendly.		
	
2)	Offloading	Approaches	used	in	Cyber	Foraging	and	their	
Limitations:	 There	 are	 two	 computation	 offloading	
approaches	 available	 for	 cyber	 foraging:	 1)	 State-less	
computation	 offloading	 and	 2)	 State-full	 computation	
offloading.	
	
State-less	offloading	is	where	the	surrogate	is	not	aware	
of	 the	 state	 of	 the	 application	 or	 objects	 in	 the	 heap	
memory.	Surrogate	will	execute	the	offloaded	method	in	
a	 method	 level	 where	 the	 parameters	 are	 passed	 and	
method	will	be	executed	in	a	static	context.	Most	of	the	
cyber	 foraging	 approaches	 do	 not	maintain	 state	 during	
the	 offload,	 as	 a	 consequence	 granularity	 of	 the	 off	
loadable	component	is	limited	to	the	method.		
	
There	 are	 only	 very	 few	 significant	 approaches,	 which	
support	 state-full	 offloading.	 They	 use	 virtualisation,	
where	 the	 mobile	 operating	 system	 is	 replicated	 in	 a	
remote	location	and	the	mobile	device	and	the	surrogate	
share	 the	 application	 state	 among	 each	 other,	 which	 is	
costly	 on	 the	 surrogate	 end,	 making	 it	 unattractive	
towards	 the	 surrogate	 owner.	 This	 also	 creates	 a	
dependency	between	surrogate	and	the	mobile	device.	
	
In	 order	 to	 avoid	 these	 adverse	 impacts,	 we	 propose	 a	
state-full	 offloading	 approach,	 which	 does	 not	 create	
unnecessary	 dependencies	 and	 does	 not	 involve	
Virtualisation.		
	
B. Methodology	
The	 existing	 approaches	 and	 their	 specifications	 were	
identified	from	a	literature	survey.	Almost	57	preliminary	
researches	has	been	conducted	in	the	domain	of	enabling	
cyber	foraging	(Lewis	&	Lago,	2015).	The	survey	published	
by	Lewis	&	Lago	covers	majority	of	the	approaches	at	the	
time	 of	 their	 writing.	 It	 was	 helpful	 in	 revisiting	 the	
approaches,	 and	 also	 recent	 approaches	 had	 been	
surveyed	and	considered	within	the	scope	of	this	research.			
	
We	took	the	liberty	of	referring	our	previous	work	in	the	
domain,	targeting	towards	a	better	practical	solution	into	
consideration,	 as	 empirical	 research.	 We	 had	
experimented	with	a	 state-less	architecture,	 and	we	are	
currently	 focusing	 on	 supporting	 state-full	 offloading	
without	 virtualisation,	 which	 was	 one	 of	 the	 major	

limitation	addressed	in	our	earlier	proposed	architecture.	
(P	Vekneswaran,	2016)	
	

II.	EXISTING	WORK	
Even	 though	 there	 are	 significant	 amount	 of	 researches	
done	in	the	domain,	there	is	only	a	handful	of	approaches	
that	maintains	state	while	offloading;	and	all	of	them	are	
virtualisation	based	solutions	where	maintaining	the	state	
is	vital	to	react	upon	each	invocation.		
	
A. AMCO	
The	mobile	 application	 developer	 declaratively	 specifies	
the	suspected	energy	consumption	hotspots	 in	a	mobile	
application.	Based	on	this	input,	AMCO	then	automatically	
transforms	the	application	to	enable	it	to	offload	parts	of	
its	functionality	to	the	cloud.	The	offloading	is	exceedingly	
versatile,	 being	 driven	 by	 a	 runtime	 framework	 that	
powerfully	 decides	 both	 the	 state-to-offload	 and	 its	
exchange	 instrument	 in	 light	 of	 the	 execution	 condition	
set	up.	In	addition,	the	system	continuously	improves	with	
a	feedback-loop	mechanism.	
	
To	 mark	 hotspot	 components,	 AMCO	 provides	 a	 Java	
annotation	 @OffloadingCandidate;	 this	 information	 can	
also	be	specified	through	an	XML	configuration	file.	Based	
on	this	input,	an	analysis	engine	first	checks	whether	the	
specified	component	can	be	offloaded	as	well	as	any	of	its	
sub-components	 (i.e.	 successors	 in	 the	 call	 graph).	 The	
engine	 additionally	 ascertains	 the	 program	 state,	 to	 be	
exchanged	between	the	remote	and	local	segments	that	
would	 should	 be	 exchanged	 to	 offload	 the	 execution	 of	
both	the	whole	segment	or	of	any	of	its	sub-segments.	A	
bytecode	enhancer	at	that	point	creates	the	checkpoints	
that	 spare	and	 re-establish	 the	ascertained	state	 for	 the	
whole	hotspot	 segments	 and	additionally	 for	 each	of	 its	
subcomponents	(Kwon	&	Tilevich,	2013).	
	
It	is	easier	to	develop	cyber	foraging	enabled	application	
on	top	of	AMCO	because	it	is	just	a	matter	of	annotating	
the	offload	candidates	or	migrating	the	entire	processes	to	
the	 cloud.	 But	 it	 also	 adverse	 impacts	 such	 as	 cost	 of	
sharing	the	entire	state,	tracking	state	modifications	also	
offloading	everything	to	the	could	not	be	beneficial	at	all	
times.		
	
B. ROAM	
ROAM	 is	 a	 JAVA	 application	 framework	 that	 can	 assist	
developers	to	build	Java	Based	multi-platform	applications,	
which	run	on	heterogeneous	devices;	and	allows	a	user	to	
move/migrate	 a	 running	 application	 among	
heterogeneous	 devices	without	 any	 significant	 effort	 by	
the	user.	
	
In	 nutshell,	 the	 ROAM	 agent	 on	 the	 source	 device	 first	
negotiates	with	the	ROAM	agent	on	the	target	device.	The	
negotiation	 involves	 exchanges	 of	 the	 target	 device	
capabilities	needed	by	each	application	component,	and	

the	code	base	URL	where	the	ROAMlet	component	byte	
code	can	be	downloaded	from.	Based	on	the	exchanged	
information,	 the	 ROAM	 agent	 decides	 the	 appropriate	
adaptation	strategy	for	each	component.	The	ROAM	agent	
on	 the	 target	 device	 downloads	 the	 necessary	 ROAMlet	
class	 byte	 code	 from	 the	HTTP	 server	 for	 all	 application	
components	that	will	be	instantiated	on	the	target	device.	
The	ROAMlet	on	the	source	device	serializes	its	execution	
state	and	sends	it	to	the	ROAM	agent	on	the	target	device.	
The	 ROAM	 agent	 may	 perform	 execution	 state	
transformation	 if	 an	 application	 component	 is	
transformed	or	dynamically	instantiated.	The	ROAM	agent	
instantiates	the	ROAMlet	on	the	target	device.	 (Hao-hua	
Chu,	2003)	
	
ROAM	 doesn’t	 target	 computational	 offloading	 directly	
but	does	 focus	on	 task	migration	aspect	 in	depth.	What	
ROAM	is	trying	to	achieve	is	pretty	far	fetch	because	it	is	
attempting	to	tackle	pervasive	computing	first	rather	than	
Cyber	 Foraging	 itself.	 Server	 components	 must	 be	
manually	written	so	according	 to	 the	device	context	 the	
code/service	 will	 be	 retrieved	 from	 the	 server.	 Even	
though	it	mentions	about	the	heterogeneous	devices,	they	
are	targeting	Java	based	operating	systems	all	run	on	JVM.	
So,	transforming	state	is	straight	forward.		
	
C. Clone-Cloud	and	Cloudlet	
Cloud	computing	alludes	to	a	style	of	figuring	where	online	
assets	and	applications	are	accessed	by	clients	through	a	
web	browser,	yet	 the	 real	 software	and	data	are	put	on	
remote	 servers.	 As	 the	 client's	 point	 of	 view,	 the	 client	
does	not	have	to	buy,	oversee	or	maintain	the	technology	
"in	the	cloud".	Intel's	thought	is	to	take	the	mobile	device	
that	 has	 lower	 performance	 and	 clone	 the	 whole	
arrangement	 of	 information	 and	 applications	 onto	 the	
cloud,	 at	 that	 point	 sync	 the	 two.	 It	 is	 then	 likewise	
conceivable	to	dole	out	graphics	and	processing	power	to	
the	task	in	the	cloud	and	give	an	apparently	elite	with	full	
PC-like	experience	to	the	present	smartphone	or	netbook	
with	 no	 change	 to	 the	 client	 experience	 and	 interface.	
(Chun,	Ihm,	Maniatis,	Naik,	&	&	Patti,	2011)	
	
Clone-Cloud	 and	 Cloudlet	 approaches	 don’t	 fall	 too	 far	
away	from	each	other.	Cloudlet	is	a	concept	to	deploy	an	
in-box	cloud	in	house,	which	is	self-managed	and	does	not	
need	any	professional	attention.	A	cloudlet	is	deployed	for	
few	users	 to	share	the	computing	resource	via	 the	high-
speed	LAN	network,	 rather	 than	using	 the	distant	public	
cloud	on	the	Internet	 in	order	to	shorten	the	latency	for	
real	time	application.	
	
Even	though	it’s	easier	to	develop	just	like	AMCO,	Clone-
Cloud	requires	heavy	modifications	to	the	Android	Device	
kernel	to	support	this	infrastructure.	
	
	
	

D. Collaborative	Applications	with	Mobile	Cloud	
This	 contains	 an	 architecture	 and	 a	 paradigm	 for	
developing	 collaborative	 applications	 with	 minor	
modifications	 to	 today’s	 mobile	 and	 cloud	 computing	
infrastructures.	 This	 approach	 is	 focusing	on	 cloning	 the	
kernel	 requests	 and	 responses	 in	 the	 cloud	 to	maintain	
state.	 Also	 has	 an	 offload	 advisor	 to	 evaluate	 the	
effectiveness	of	offloading	and	make	the	choice	to	offload	
or	not.	(Yu-Shuo	Chang,	2012)	
	
This	also	requires	hosting	and	has	the	same	drawbacks	as	
of	Clone	Cloud	and	Cloudlet.		
	

III.	PROPOSED	APPROACH	
In	order	to	enable	less	developer	effort	in	cyber	foraging	
enabled	mobile	applications	development,	we	think	that	
the	assistance	provided	by	the	development	framework	to	
the	developers	is	an	important	fact.	(P	Vekneswaran,	2016)	
Aspects		(JBoss,	2016)	reduce	the	build	process	immensely,	
by	 reducing	 the	need	 to	write	 separate	 code	 for	 the	off	
loadable	 components,	 which	 will	 be	 discussed	 in	 the	
following	 section.	 Also,	 we	 made	 improvements	 for	
achieving	 computation	 offloading,	 to	 support	 state	
transmission	to	other	VMs.		
	
A. Aspect	based	Annotation	
Candidate	methods,	 the	 resource	 intensive	 components	
of	the	code,	recommended	for	offloading	can	be	scattered	
all	over	the	application,	thus	the	application	has	to	invoke	
the	 decision-making	 engine	 every	 time	 before	 such	
method	 is	 invoked.	 Knowledge	 of	 those	 offload	method	
calls	is	simply	irrelevant	to	the	business	logic	in	the	class.	
In	such	scenario,	we	propose	to	use	Aspect	Orientation	in	
mobile	application	code,	to	identify	the	compute	intensive	
tasks	 all	 around	 the	 application,	 and	 while	 using	
annotations	won’t	interfere	with	the	business	logic	or	the	
object	 orientated	 design	 and	 architecture	 of	 the	
application.	(P	Vekneswaran,	2016)	
	
The	 annotation	 is	 the	 key	 of	 our	 proposed	 approach,	
which	helps	the	developer	to	specify	the	identified	intense	
tasks	 in	 the	 application	 to	 state,	 which	 affects	 the	
execution.	In	this	approach,	there	are	already	predefined	
advices,	which	need	to	be	injected	during	the	compilation	
phase.	Here	the	advice	is	the	code	that	is	injected	into	the	
class	 file;	 typically,	 which	 needs	 to	 be	 inserted	 before,	
after,	or	instead	of	the	target	method.	When	the	method	
is	marked	using	the	“offloadMethod”	annotation,	AspectJ	
will	 generate	 the	 boilerplates	 that	 is	 necessary	 for	 the	
annotated	method.		
	
In	 our	 approach,	 we	 suggest	 annotating	 the	 potential	
offloading	 candidate	 methods	 in	 classes,	 using	 the	
“offloadMethod”	 along	 with	 the	 name	 of	 the	 objects	
which	states	need	to	be	transferred	to	the	Surrogate	using	
Aspect	orientation.	Just	using	one	annotation,	identifying	
different	 methods	 with	 different	 behaviours	 is	 not	
possible.	Therefore,	it	is	necessary	to	be	able	to	annotate	
a	single	method	using	multiple	annotations	as	a	part	of	the	

framework	we	propose;	so,	the	developer	can	create	his	
custom	defined	aspects	through	creating	new	annotation	
interfaces	using	default	templates	provided.	
	

B. Development	Process	and	Limitations	
When	 using	 the	 annotations,	 the	 developer	 should	
identify	the	methods	and	objects	that	is	referenced	inside	
the	 context	 that	 consists	 of	 the	 compute	 intensive	
components	 that	 has	 be	 considered	 by	 the	 decision-
making	engine	during	the	runtime,	weather	it	needs	to	be	
offloaded	 or	 not.	 This	 requires	 the	 developer	 to	 have	 a	
basic	 knowledge	of	 the	application	 source,	 states	of	 the	
objects	 that	 is	 required	 for	 offloading,	 and	 the	 flow	 of	
execution.		
	
Identified	intensive	methods	cannot	reside	inside	Android	
Activities.	 These	 methods	 should	 not	 attempt	 to	 read	
hardware	 specific	 sensor	 data	 inside	 their	 scope,	 which	
will	cause	errors	during	the	runtime.	Alternative	is	to	read	
the	 sensory	 data	 and	 pass	 it	 as	 a	 state.	 The	 intensive	
components	should	be	added	to	a	separate	java	class	for	
it	to	be	executed	correctly	in	the	surrogate	environment.	
If	the	source	is	already	separated	this	step	can	be	ignored.	
	
These	 candidate	 methods	 should	 be	 marked	 by	 the	
developer	 by	 adding	 annotations	 along	 with	 the	 object	
details,	which	the	state	needs	to	be	preserved.	During	the	
build	time	boilerplate	codes	will	be	added	by	the	AspectJ	
runtime,	which	 is	 included	 in	 the	 framework.	 There	 are	
predefined	aspects,	which	the	developer	can	use,	or	if	the	
developer	 is	 looking	 for	 some	distinct	characteristics,	he	
can	modify	the	aspects	accordingly.	Afterwards	developer	
can	build	 the	application	and	produce	 the	APK,	which	 is	
ready	to	be	installed	in	the	mobile	devices.		
	
The	surrogate	service	should	be	running	at	the	time	when	
the	application	is	about	to	execute	the	compute	intensive	
tasks.	According	to	configuration,	 the	mobile	application	
will	 find	the	surrogate	device	and	attempt	to	connect	to	
the	 service	 and	 offload.	 The	 surrogate	 service	 will	 then	
check	if	the	mobile	application	is	already	in	its	repository	
of	packages.	If	not,	it	will	pull	the	source	from	the	mobile	
device.	As	the	components	are	sent	automatically	to	the	
surrogate,	there	is	no	need	for	the	developer	to	manually	
deploy	 the	 components	 explicitly.	 This	 is	 a	 one-time	
process,	 and	 afterwards	 any	 mobile	 device	 running	 the	
similar	application	can	offload	to	that	particular	surrogate	
device,	without	pulling	the	source	to	the	surrogate.	Once	
the	source	 is	 loaded,	 the	surrogate	will	execute	the	task	
copying	the	objects	and	their	states	to	its	heap	and	return	
the	 result	 back	 to	 the	 mobile	 device	 with	 the	 updated	
heap	 state.	 If	 it	 is	 not	 beneficial	 to	 offload,	 the	 mobile	
device	will	execute	the	task	normally	without	offloading	to	
the	surrogate.	

	
IV.	EVALUATION	

The	proposed	solution	will	have	the	following	advantages	
over	the	existing	development	approaches.		
	

It	eliminates	the	need	for	writing	two	separate	codes	to	do	
the	 same	 task	 in	 the	mobile	 and	 surrogate	 to	 preserve	
state,	 or	 use	 virtualisation	 as	 an	 alternative	 to	 enable	
cyber	 foraging	 in	 new	 applications.	 Also,	 no	 need	 to	
modify	the	existing	source	code,	just	need	to	annotate	the	
offload	 candidate	 methods	 and	 meta	 information	
required	to	process	the	information.	This	will	cut	down	the	
time	required	by	the	developer	to	enable	cyber	foraging	in	
mobile	applications.	The	Aspect	based	approach	will	allow	
the	 developer	 to	 plug	 and	 play	 his	 own	 logic	 in	 the	
decision-making	 engine,	 communication	 protocol	 etc.	
according	to	his	requirements	giving	him/her	full	freedom	
to	customize	the	outcome.	When	building	the	application,	
the	 AspectJ	 runtime	 will	 handle	 the	 generation	 of	 the	
necessary	boilerplate	codes,	which	will	 further	cut	down	
the	 developer	 cost.	 In	 comparison	 to	 the	 existing	
approaches	 that	 is	 discussed	 in	 Section	 3,	 the	 proposed	
solution	 in	 this	 paper	 has	 majority	 of	 the	 development	
process	 automated	 and	 easily	 configurable	 through	 the	
build	 scripts.	 This	 approach	 will	 also	 give	 developers,	
enough	 customisation	 options	 as	 well.	 Also	 without	
hosting	 the	 entire	 mobile	 operating	 system	 the	
lightweight	service	will	compute	the	JAVA	components.	
	

V.	CONCLUSION	AND	FUTURE	WORK	
Even	though	cyber	foraging	can	be	easily	achieved	through	
virtualization,	 there	 are	 other	 factors	 such	 as	 functional	
overhead,	 which	 have	 adverse	 impact	 on	 the	 energy	
consumption	and	performance.	We	can	conclude	that	the	
offload	 technique	 we	 propose	 is	 more	 effective	 in	 a	
preliminary	level,	and	reducing	the	time	consumption	for	
the	development	by	automating	most	of	the	build	process	
with	 the	 help	 of	 AspectJ	 and	 Android	 Development	
Environment.	 	 At	 the	moment	 doesn’t	 support	 non-java	
based	 platforms.	 Also,	 it	 will	 not	 support	 rapid	 state	
changes	at	the	moment.	

	
We	expect	to	further	improve	the	proposed	approach	and	
introduce	a	framework,	allowing	more	common	features	
like	integration	to	the	available	IDEs,	which	will	reduce	the	
developer	 effort	 furthermore,	 supporting	 rapid	
development.	 Future	 of	 this	 research	 will	 extend	 to	
supporting	the	android	code	such	as	activities,	fragments	
rather	 than	 being	 only	 able	 to	 offload	 the	 JAVA	
components	of	the	application.		
	

REFERENCES	
Balan,	Krishna,	R.,	Gergle,	D.,	Satyanarayanan,	M.,	&	Herbsleb.,	J.	
(2007).	Simplifying	cyber	foraging	for	mobile	devices.	(pp.	272-
285).	ACM.	
Balan,	 R.,	 Flinn,	 J.,	 Satyanarayanan,	 M.,	 Sinnamohideen,	 S.,	 &	
Yang,	H.-I.	 (2002).	The	Case	 for	Cyber	Foraging.	Proceedings	of	
the	10th	workshop	on	ACM	SIGOPS	European	workshop	(pp.	87-
92).	ACM.	
Chun,	B.	G.,	Ihm,	S.,	Maniatis,	P.,	Naik,	M.,	&	&	Patti,	A.	(2011).	
Clonecloud:	elastic	execution	between	mobile	device	and	cloud.	
(pp.	301-314).	Proceedings	of	the	sixth	conference	on	Computer	
systems.	

Flinn,	Jason,	Park,	S.	Y.,	&	Satyanarayanan,	M.	(2002).	Balancing	
performance,	 energy,	 and	quality	 in	pervasive	 computing.	 (pp.	
217-226).	IEEE.	
Gartner.	(2016).	Gartner	Says	Worldwide	Smartphone	Sales	Grew	
9.7	Percent	in	Fourth	Quarter	of	2015.	Retrieved	April	16,	2016,	
from	http://www.gartner.com/newsroom/id/3215217	
Hao-hua	 Chu,	 H.	 S.	 (2003).	 Roam,	 a	 seamless	 application	
framework.	The	Journal	of	Systems	and	Software	.	
JBoss.	(2016).	Chapter	1.	What	Is	Aspect-Oriented	Programming?	
Retrieved	 March	 30,	 2016,	 from	
http://docs.jboss.org/aop/1.0/aspect-
framework/userguide/en/html/what.html	
Kwon,	 Y.-W.,	 &	 Tilevich,	 E.	 (2013).	 Reducing	 the	 Energy	
Consumption	of	Mobile	Applications	Behind	the	Scenes.	IEEE.	
Lewis,	G.	A.,	&	Lago,	P.	(2015).	A	Catalog	of	Architectural	Tactics	
for	Cyber-Foraging.	ACM.	
P	 Vekneswaran,	 D.	 N.	 (2016).	 Annotation	 based	 Offload	
Automation	 Approach	 for	 Cyber	 Foraging	 Frameworks.	 9th	
International	Reserch	Conference.	KDU.	
Satyanarayanan,	 M.	 (2001).	 Pervasive	 computing:	 Vision	 and	
challenges.	Personal	Communications,	IEEE	8.4	(pp.	10-17).	IEEE.	
Weiser,	M.	(1991).	The	computer	for	the	21st	century.	(pp.	94-
104).	Scientific	american	265.3.	
Yu-Shuo	 Chang,	 S.-H.	 H.	 (2012).	 Developing	 Collaborative	
Applications	with	Mobile	Cloud.	Journal	of	Internet	Services	and	
Information	Security.	

