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Abstract— Univariate time series analysis under the
time domain has become a widely used data
analysis technique from the past. The methods
belong to time series could be used to identify the
temporal structure of data and forecasting. Among
them Box and Jenkins approach has been used in
the research studies and could be rendered as the
commonly used method. Accordingly, they have
introduced a model to predict the future behaviour
through an auto-projective method that uses the
past behaviour of the series.

The purpose of this study is to obtain accurate out-
of-sample forecasts for stock price indices using an
ARIMA model. The daily All Share Price Indices
(ASPI) were used over the period from 2nd January
2012 to 31st December 2013 in Colombo Stock
Exchange (CSE), Sri Lanka. This study used Box-
Jenkins method with four main concepts of model
identification, estimation, diagnostic checking and
forecasting.

Basically, the concept of information criteria was
used for the model identification process. The
corresponding model Parameters were estimated at
the training data sample using the least square
method. Moreover, residual plots and residual tests
were used to check the model diagnosis. Finally,
different error approaches such as mean absolute
error (MAE), root mean square error (RMSE), and
mean absolute percent error (MAPE) were used to
evaluate the forecast performances of the selected
models through different time horizons.

Two models were chosen according to the results of
Akaike’s information criterion (AIC), Schwarz’s
Bayesian information criterion (SBIC), and Hannan-
Quinn  criterion  (HQIC.) The out-of-sample
forecasting indicates that the selected two models
are appropriate for one step ahead forecasting than
the long time horizon. The aggregate results
depicted that; ARMA (1, 1, 0) is the optimal model
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and can produce more accurate result than ARIMA
(4, 1, 5) for ASPI data within the considered time
period.

Keywords— Box-Jenkins method, ARIMA,
Forecasting

I.INTRODUCTION

In contrast to the structural models, time series
models are different in the model building process
by capturing important behaviours of observed
data. Beyond that, univariate time series modelling
is quite important when the explanatory variables
are not available. Among the many methods of
forecasting a time series, Box and Jenkins approach
has been widely used in research studies and could
be rendered as the commonly used method.
According to the approach, they introduced a model
to predict the future behaviour through an auto-
projective method which uses the past behaviour of
the series. The corresponding basic model is simply
known as ARMA; Autoregressive Moving Average
(Box & Jenkins, 1970). It's an important class of
model is known as ARIMA; Autoregressive
Integrated Moving Average after converting level
data into its first difference series.

As a linear statistical model, ARIMA is important to
capture the linear features of the past and current
observations. According to that, the future value of
the series is assumed to be a linear combination of
three components: auto-regression (AR),
integration (l), and moving average (MA). The
corresponding model can be denoted as ARIMA (p,
d, q), where p is the number of auto-regression
terms, d is the number of non-seasonal differences,
and g is the number of lagged forecast errors (Box &
Jenkins, 1970; Wang et al., 2012).

Many studies have used ARIMA models to analyse
time series data and shown that they obtained the
best results comparative to some of the other



traditional models. For instance, Ho et al. (1998)
investigated repairable system reliability forecasting
based on the ARIMA models under the Box-Jenkins
methodology. They followed the ARIMA model and
the comparison has been made with the traditional
Duane model. The corresponding results pointed
that ARIMA model is a viable alternative based on
its predictive performance. Sharma et al. (2009)
adopted Box-Jenkins method for forecasting the
ambient air quality data of Delhi City. In their study,
several models were developed based on ARIMA
and the evaluation statistics showed that the
suggested Box-Jenkins approach is satisfactory in
the forecasting process. Moreover, they mentioned
that the developed models could be used to provide
short-term, real-time forecasts of extreme air
pollution concentrations.

Jayasinghe and A. Kankanamge (2011) attempted to
ASPI
techniques with a time trend component. ARMA (1,
1) was selected as the optimal model with the
quadratic time trend. Based on one week ahead
forecasting results, they showed that a simple

forecast using univariate time series

ARMA model with a time trend component can be
used to produce a reasonably good forecast among
many other time series models. In addition
Rathnayaka et al. (2014) did a sector vise data
analysis on basis of ARMA models. Among the
several, ARMA (1, 1) and ARMA (1, 0) were selected
as best fitted models for different set of sectors.

Some researchers have concentrated to identify the
patterns in the stock prices and forecasting. For
example, Herrmann (1980) used the Box-Jenkins
approach to determine whether or not the buffer
stock policy under the 1980 International Cocoa
Agreement stabilized world market prices. Under
his methodology, ARIMA models were estimated
and used in the forecasting process to fulfil their
expectations. Besides, some researchers have
attempted to make comparisons of the forecasting
ability of ARIMA with the other models. For
instance, one study was done by Koch et al. (1994)
for forecasting stock returns in Japanese, UK and US
markets during the Crash of October 1987. In this
case, an ARIMA model was used along with a
simultaneous equation model. The empirical results
pointed out that neither type of models accurately
forecasts the sharp changes in the market indices
around the crash. Another comparison was made by
Stevenson (2007) by examining ARIMA models in
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the context of rent forecasting data for the British
office markets. Based on the results, the study
depicted that the ARIMA models are useful in
anticipating broad market trends, but there are
substantial differences in the forecast obtained
using alternative specifications.

On basis of the previous studies, it can be concluded
that an ARIMA model is useful to find the important
features of the observed data as well as suitable to
make the best forecasts for some sort of time series
data. Beyond that, more steps and methods might
be required to analyse particular situations. In our
study, we attempt to find a suitable ARIMA model
for out-of-sample forecasting. The recently
published daily All Share Price Indices (ASPI) data
are considered over the period from 02nd January
2012 to 31st December 2013. The present study
uses Box-Jenkins (1970) method in accordance with
four concepts that the model identification,
estimation, diagnostic checking and forecasting.
Initially, the selected sample is categorized as
training and testing according to the ratio 0.85:0.15
and the training data sample is used for the process
of model building. Then, the out-of sample
forecasting is carried out to all the selected models.
Finally, the optimal model is selected based on the
performance of mean absolute error (MAE), root
mean square error (RMSE), and mean absolute
percent error (MAPE).

The paper is organized as follows. Next section
briefly describes the basic concepts of the Box-
Jenkins methodology for ARIMA forecasting. Section
three employs ASPI data to check the
appropriateness of ARIMA forecasting through the
empirical results. The conclusion and future
research directions are rendered in the final section.

II. BOX-JENKINS METHODOLOGY

The methodology consists of four components:
model identification, parameter estimation,
diagnostic checking and forecasting.

A. Model Identification

In the model identification process, an important as
well as the initial step is to determine the stationary
of the series. If not, the results of the study might
be spurious based on the influence of its chaotic
behaviours. It can be two types which are trend
stationary and difference stationary based on the
process of converting a non-stationary series into a



stationary series. However, the types of stationarity
can be tested by using the behaviour of a
correlogram (acf plot), based
autocorrelation. As well as unit root tests based on
the unit root such as Augmented Dickey-Fuller
(ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS).

which is on

1) Autoregressive Integrated Moving Average Model
(ARIMA): If a time series does not show any other
seasonal or cyclical behaviour, the stationary series
can be used to determine the order of the
autoregressive terms (AR) and moving average
terms (MA). For this, we can use both
autocorrelation  function  (acf) and partial
autocorrelation function (pacf) by judging the
corresponding acf and pacf plots. In addition,
alternative techniques such as information criteria
can be used along with the graphical plots. There
are mainly three information criteria such as
Akaike’s information criterion (AIC), Schwarz’s
Bayesian information criterion (SBIC), and Hannan-
Quinn criterion (HQIC).

Based on the Preliminary analysis, if we select a
model as ARIMA (p, d, q), then the stationary,
invertible, mixed autoregressive moving average
process can be written by the equations 1 as
follows:

P
v, = i§1¢ivt,i—z€jat,j+at

(1)

Where v, is the d" difference of the original series,
a's are independent random variables, ¢'s and
@'s are structural constants for the system (Box &
Jenkins, 1970; Box & Pierce, 1970).

B. Parameter Estimation of ARIMA Model

After specifying the suitable model, Parameter
estimation methods can be applied to estimate the
Parameters. Several estimation methods are
available in the literature such as least square
method and maximum likelihood method (Maddala,
2001).

C. Diagnostic Checking

The adequacy of the constructed model can be
figured out based on the residuals. Initially, the
residuals should be checked for the evidence of
autocorrelations using its acf and pacf plots for
white noise. Then, the tests of residuals are able to
use for diagnostics. Under the residual diagnostics,
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Box-Pierce or Q statistic, Box-Ljung (or Modified
Box-Pierce) statistic, Durbin-Waston statistic and
Lagrange Multiplier tests have been presented in
the theory (Brooks, 2008; Maddala, 2001).

D. Forecasting Performance

Forecasting is the final step of the Box-Jenkins
method. It can be functioned for one-step ahead or
multi-step ahead forecasting horizons. The
evaluation of the forecasting values is based on the
common performance measures such as mean
absolute error (MAE), root mean squared error
(RMSE), and mean absolute percent error (MAPE)
given by the equations 3, 4 and 5 as follows:

1T .
mae = = T Yo~V

T N
MSE = 1 Z(Y(t)—Y(t))z
\ T2

1 T N
MAPE = thl‘(y(t)_y(t))/y(t)‘

(3)

(4)

(5)

~

) and Y(t) are actual and predicted
values at time t, T is the number of observations.
Since all the measures are rendered as the deviation
between actual and predicted values, the model
with the better forecasting results can be chosen
based on the minimum values of MAE, MSE and

MAPE.

Where Y,

[1l. EXPERIMENTATION DESIGN AND EMPIRICAL
RESULTS

A. Data

The purpose of this study is to find a suitable ARIMA
model for out-of-sample forecasting using short
time period of historical data. For this, we use
recent daily ASPI index in Colombo Stock Exchange
(CSE), Sri Lanka over the period from 2nd January
2012 to 31st December 2013. The sample consists
of 484 values and the first 411 values (about 85% of
the sample) are allocated as in-sample (training
sample) and the remaining 73 values are considered
as the out-of-sample (testing sample). To enhance
the accuracy of the results of the analysis, we use
logarithms of the original data series based on the
homoscedasticity. The corresponding time series
plot of logarithm ASPI (run sequence plot) is shown
in Fig. 1.
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Figure 2. Daily logarithmic data of ASPI

B. Empirical Results

In this study, Eviews 6 and Minitab statistical
packages were used in the process of modelling and
forecasting. Initially, a run sequence plot was
examined to see whether there is any trend or
seasonal components in the data series. The Fig. 1
shows the run sequence plot and it reveals that
there is not any significant trend or obvious
seasonal pattern in the data.

Next, stationary of the series was tested by using
acf plot and the unit root tests. The corresponding
results are displayed in Fig. 2 below.
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Figure 3. ACF plot of daily logarithmic ASPI data

The acf plot of logarithmic ASPI data depicts that
the sample autocorrelations are strong, positive and
decaying very slowly. Therefore, it indicates that the
series is non-stationary. Moreover, it does not show
any periodic behaviour and can be decided that the
data set does not have any seasonal component.
Hence, we can propose that the ARIMA model is
appropriate for the considered data series. Then,
the first difference of the original series was
obtained and checked the stationary behaviour
using acf plot which is displayed in Fig. 3.
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Figure 4. ACF plot of the 1* difference of daily
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logarithmic ASPI data
According to the Fig. 3, we can see that all the
autocorrelations lie between the bounds except the
autocorrelation at lag 1.

Table 2. Results of unit root tests

Test ADF
Intercep | Trend &
t Intercep
t
ADF (p-value) Level 0.4512 0.1877
1 0.0000 | 0.0000
difference
PP (p-value) Level 0.3792 0.1432
1t 0.0000 | 0.0000
difference
KPSS (LM- Level 1.4271 0.2065
stat) 1 0.1650 | 0.1116
difference

Based on the ADF and PP test results in Table 2, it
can be pointed that the non-rejection of null
hypothesis at the level and the rejection of the null
hypothesis at the corresponding first difference.
Therefore, it can be confirmed that the first
difference is required to make the level data into
stationary for ASPI series. KPSS test helps decide
that the necessity of trend or difference operation
to convert the data into stationary series. The
corresponding KPSS test result shows the rejection
of the null hypothesis of trend stationary for the
logarithms of ASPI series. The overall result reveals
that the first difference of the series can make the
data stationary.

Then, the stationary series was used to identify the
suitable models estimated their parameters. Table 3
gives the values of AIC, SBIC and HQIC of the models
for ARIMA (0,0) to ARIMA(5,5).



Table 3. Information criteria for ARIMA model selection
for daily logarithmic ASPI data

AIC, SBIC, and HQIC

p 0 1 2 3 a4 5
/
q

0 - 67994 | -6.7981 | -6.7974 | -6.7961 | -6.8036

67896 | -6.7785 | -6.7681 | -6.7569 | -6.7547

-6.7956 | -6.7903 | -6.7858 | -6.7806 | -6.7843

1| -6.8045 | -6.8012 | -6.8040 | -6.7991 | -6.7952 | -6.7968

-6.7947 | -6.7816 | -6.7746 | -6.7598 | -6.7461 | -6.7379

-6.8007 | -6.7934 | -6.7924 | -6.7835 | -6.7757 | -6.7735

2| -6.8003 | -6.8014 | -6.7974 | -6.8072 | -6.8324 | -6.8337

-6.7807 | -6.7719 | -6.7580 | -6.7580 | -6.7735 | -6.7648

-6.7926 | -6.7897 | -6.7818 | -6.7877 | -6.8091 | -6.8064

3| -6.7985 | -6.7904 | -6.8059 | -6.8004 | -6.8065 | -6.8139

-6.7689 | -6.7559 | -6.7567 | -6.7413 | -6.7376 | -6.7351

67869 | -6.7797 | -6.7864 | -6.7770 | -6.7792 | -6.7828

4| -6.7929 | -6.7884 | -6.8183 | -6.8336 | -6.8261 | -6.8688

-6.7534 | -6.7390 | -6.7591 | -6.7645 | -6.7471 | -6.7799

67772 | -6.7688 | -6.7949 | -6.8063 | -6.7948 | -6.8337

5| -6.7901 | -6.7879 | -6.8371 | -6.8462 | -6.8212 | -6.8656

-6.7406 | -6.7286 | -6.7679 | -6.7671 | -6.7322 | -6.7668

-6.7705 | -6.7644 | -6.8097 | -6.8149 | -6.7859 | -6.8265

Accordingly, two models were selected on basis of
the minimum values of information criteria and the
significance of the parameters. They are ARIMA (1,
1, 0) and ARIMA (4, 1, 5) respectively.

The adequacy of the selected models was tested
through some graphical techniques based on the
assumptions of the residuals and some statistical
tests. Fig. 4 represents the four plots of residuals
based on the ARIMA (4, 1, 5). The normal
probability plot and the histogram indicate that an
adequate fit of the model provide by the normal
distribution. Residual vs. fits plot in Fig. 4: shows
that the residuals are well behaved around zero and
indicates that the variance of the residuals is equal.
The run sequence plot shows that most of the
residuals are scattered in the same range and
proves that the assumptions of common location
and common scale.
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Figure 4. Four plot of residuals for ARIMA (1, 1, 0) model
for daily logarithmic ASPI data

In the same way, we examined the adequacy of the
remaining model ARIMA (4, 1, 5) as well.

Table 4. Breusch-Godfrey Serial Correlation LM Test for
the selected ARIMA models

Model F-statistic Prob.
ARIMA (1,1,0) 0.2468 F(1,407) 0.6196
ARIMA (4,1,5) 0.9018 F(5,392) 0.4799

Results in Table 4 indicates that the Breusch-
Godfrey serial correlation LM test for the aforesaid
two ARIMA models to test the null hypothesis that
there is no serial correlation up to specified lag
order. For each case, results show that the test does
not reject the null hypothesis of no serial
correlation up to specific order. As a next step, the
selected models can be used for forecasting.
Therefore, aforesaid models were used to assess
the out-of-sample forecasting performance for the
horizon of one day ahead, seven days ahead and 73
days ahead (testing sample). The corresponding
RMSE, MAE and MAPE results are summarized in
Table 5 below.

Table 5. Performance measures of the selected ARIMA
models for daily logarithmic ASPI data

Model Forecast RMSE MAE MAPE
Period

1 day 0.8880 0.8880 0.0002

“ARIMA (1,1,0) 7 days 413129 36.5105 0.0063

73 days 114.3509 94.2789 0.0160

1 day 16.8456 16.8456 0.0029

ARIMA (4,1,5) 7 days 57.0805 51.9939 0.0091

73 days 100.1565 79.5202 0.0135

*denotes the model with the minimum error values

Table 5 shows that, the accuracy of the forecasts
decrease when the forecast horizon
Accordingly, one step ahead forecast gives more

increases.




accurate results than the other forecast horizons.
Moreover, ARIMA (1, 1, 0) model gives the optimal
one day ahead forecast than ARIMA (4, 1, 5).

IV. CONCLUSION

In the present study, Box-Jenkins methodology was
used to find the suitable ARIMA model for out-of-
sample forecasting using a short period of time. For
this, recent two years of daily ASPI data was
employed. Basically, the concept of information
criterion was used to identify the appropriate
models and then the error measures were used to
find the better forecasting results.

Based on the results, we can suggest that the two
ARIMA models are more suitable for one step ahead
forecasting. This result is similar to the conclusion of
the study (Sharma et al.,, 2009) and they also
pointed that the ARIMA models could be used to
provide short-term forecasting. The aggregate
results of our study depicted that; ARMA (1, 1, 0) is
the optimal and can produce the most accurate
result than ARIMA (4, 1, 5). Based on the overall
result, it can be suggested that the used Box-Jenkins
approach is sufficient for obtaining satisfactory
short term forecast.

The conventional ARIMA model can effectively
capture the linear components of the series.
Generally, stock prices are chaotic and show both
linear and nonlinear behaviours. Therefore, the
accuracy of forecast might be enhanced by
modelling the non-linear behaviours of the series as
well. Therefore, further modifications could be
included to the selected model to enhance the
accuracy of the forecast. Further, the accuracy of
ARIMA forecasting can be evaluated by comparing
with forecasting results of other linear and non-
linear models.
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