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Abstract— let L={L,,L,...,L,;} denote the
collection of the first n Legendre polynomials, L,
}c Rbea
set of n sample points. The n-point discrete

Legendre polynomial transform (DLT) of an input
vector, f =(fy, 1>+ ) € R™ is defined by the

collection {Ly, L, ,....L, ,},
Zj :Zz;hkaj(xk) for each j=0,1,...,n—1. The

DLT is a widely used numerical tool in a range of
scientific and technical applications, including
solving partial differential equations using spectral
methods, molecular shape analysis , and statistical
data analysis. A direct computation of the DLT
(DDLT) holds a matrix-vector product of PfT,

where P=(L;(x;));; for i,j=01...,n-1 and

of degree k and let X ={xy,x,...,x,

where

hence it requires a time complexity of 0(n3). This
cost gets prohibitively increased for large values of
n and thus it is computationally undesirable for
practical purpose. In our recent work, a fast
algorithm of time complexity O(n log22 n) (FDLT)
has been formulated to compute the DLT efficiently.

Although this algorithm is exact in hand
computation, its accuracy is contaminated by lots of
numerical errors when it is implemented in

computer arithmetic. The purpose of this paper is to
improve the accuracy of the FDLT algorithm. In the
initial phase of the FDLT, it is required to compute
the Vandermonde matrix vector multiplication
efficiently given by Z,=77",where ¥ =(x,"),;
for i, j=0,1,...,n—1. The available fast algorithm
in

which is used to compute Z, is unstable

computer arithmetic. In this paper, instead of VfT,
we apply the cosine transform, defined by CfT,
where  C=(cos(izc;/n)), ;for and
i,j=0,1,... ,n—1. The Modified FDLT (MFDLT)has

been implemented as a binary tree data structure in

c; €[0,n]
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MATLAB and this program has been used to test its
computational  performances via  numerical
experiments. The numerical experiments
demonstrate that the MFDLT permits high accuracy
to be attained and that it is faster than the DDLT
when n>128.

Keywords— Discrete Cosine Transform —DCT,
Discrete Legendre Polynomial Transform—DLT, Fast
Fourier Transform —FFT, Linear three term
recurrence relation

l. INTRODUCTION

The Discrete Legendre Polynomial Transform,
abbreviated to DLT, which is a type of polynomial
transforms, is used in a wide range of scientific and
technical applications, including solving partial
differential equations using spectral methods,
molecular shape analysis, and statistical data
analysis.

The direct method in the context of the numerical
computation of the DLT holds a matrix-vector
product of PfT, where P=(L;(x;));; for
i,j=0,1...,n—1, and it requires a time complexity
of O(n3). This complexity is highly time-consuming
for large values of n and thus it creates an
undesirability for practical purposes.

In the DLT literature, several authors have made
some attempts to bring down its complexity. In the
subject of efficient computations of Spherical
harmonic transforms , an exact algorithm was
developed with time complexity of0(1110g22 n) to
compute an n -point DLT at the natural Chebyshev
nodes(Driscoll JR & Healy Jr DM.(1989; Driscoll JR &
Healy DM.(1994)). Inda ((Inda et al (2001)) also
proposed the efficient DLT parallel computations,
while making parallel implementation of the same



algorithm. Independently, Potts et al (1998)
proposed an approximate algorithm to compute
efficiently a discrete orthogonal polynomial
transform of size n at the Chebyshev points in
0(nlog22 n) operations. Furthermore, the same
authors have improved this algorithm to compute
the discrete orthogonal polynomial transforms at

arbitrary points ((Potts D et. Al (2003).

In our recent work (Gunarathna. W. A and Nasir. H.
M(2013,), we have employed the following theorem,
which was developed by Driscoll JR et al to
formulate a fast algorithm (FDLT)  with
computational time complexity O(nlog22 n)to
compute an n-point DLT efficiently at arbitrary
sample points.

A.  Theorem
Let {hy(x), h(x),...,h, (x)} be a collection of n

functions of which the i " function h;(x) is defined

at x=0,1...,n-1, where n= 2loan 4ng satisfy the
three-term recurrence relation:

By (%) = (a;x + b Yh; (x) + ¢;hy (x) (1)
with the starting conditions /,(x)=1/A,(x)=0.
Then the following collection:

{FO),F(),....F(n-1),
where F(i)= X1, f,;(j) for all i=0,1,...,n-1,
can be computed in a time complexity of

O(nlog?s n),where £ =(fy, fi»...» f,q) is a given
fixed vector(Driscoll JR et al (1997)).

The numerical experiments confirmed that the FDLT
permits high efficiency to be attained, whereas its
accuracy is contaminated by lots of numerical
errors. The approach of the present paper is to
modify the FDLT algorithm, so that it can enable
high accuracy to be attained. In the initial phase of
the FDLT, it is required to compute efficiently the
Vandermonde matrix vector multiplication given by
Zy=Vf", where V' =(x,"), ; for i,j=0,1,...,n~1.
The available fast algorithm which is used to
compute Z, is unstable in computer arithmetic
(Driscoll JR & Healy DM.(1994).; Driscoll JR et al
(1997)). In this paper, instead of VfT,we try to

apply the cosine transform, defined by CfT,where
c; €[0,n]
i,j=0,1,.., n—1 to compute Z, (Tian, B. & Liu, Q.
H. (1999)).

C=(cos(izc;/n)),;; for and
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The organization of this paper is set to have the
In Section Il, we present
preliminaries. Section Il describes the formulation
of our algorithm. Section IV is devoted to present
the implementation of the algorithm and the
numerical results. Section V makes comments on
the numerical results. Finally, we give conclusions in
Section VI.

following structure:

Il PRELIMINARIES

In this section, we present the Legendre
polynomials, some of their properties, discrete
Legendre polynomial transforms, Cosine
transforms, and some useful efficient

computational techniques which are used in our
work.

A. Legendre polynomials
Legendre polynomials, L (x) are solutions of the
Legendre differential equation

d*p,(x) . dp,(x)
(l—xz) 2 —2x e

+n(n+1)p,(x)=0.
B. Orthogonality of Legendre polynomials

let L={Ly,L,,...,L,;} denote the collection of
the first n Legendre polynomials L, of degree k.
Then these polynomials are mutually orthogonal
functions on the Hilbert space Lz[—l,l] with
respect to the following inner product defined by

1
(1.8)= [ rIgowxd,
-1

where w(x) is some related weight function (the
weight function for the Legendre polynomials is 1)
and the corresponding norm of the function f is
given by

I71=Vir.1)
To put it another way,
(Li.L;)=c5y,
where
Lt i
7o if i=

is the Kronecker delta and ¢ is a constant.

C. Three term recurrence relation
According to Farvard’s theorem, the Legendre
polynomials govern the following linear three term



recurrence relation (Chihara TS (1957); Gautschi W

(1985).“Inda MA et al. (2001)):
2k +1 k
L ()= k++1 Ly () =y Lea () (2)

with stating conditions Ly(x)=1 and L_;(x)=0.

D. Discrete Legendre Polynomial Transforms(DLT)

let L={Ly,L,...,L,_ }denote the collection of
the first n Legendre polynomials, L,, of degree k
and X ={xy,x,...,x,y<[-Ll] be a set of n
sample points. The n-point discrete Legendre
polynomial transform (DLT) of a real input vector,

f=o>fi» --»fu) is defined by the
collection:

{Lo,Ly ... L4},
where

n—1
l_‘j :kal‘j(xk)
k=0
forall j=0,1,....,.n—1.

It can be easily seen that (3) has a matrix—vector
product in the form of PfT, where

Ly(xp) Ly(xy) L, (xq) fo
p= L, (:xl) L, (:xl) Ln—l:(xl) ’fT _ f1
LO (xnfl ) Ll (xnfl ) Lnfl (xnfl ) fnfl

The direct computation of this matrix —vector
product holds a time complexity of 0(n3) and
hence it is not computationally desirable.

E. Discrete Fourier Transform(DFT)
Then —DFT of an input vector (fy, fi,....f,.1) €
C" is defined by the collection:
{Fo,Fi;~~~,F;1_1},
where
n-1
Fe=Y fe " forall k=0,1,...,n~1.
j=0
(Cooley JW. & Tukey JW (1965))
F. Inverse Discrete Fourier Transform (IDFT)
The n-point IDFT of the DFT is defined by the
collection {fy, fi,..., f,,.1}> Where

1 ~— o
fj:;kae*’z”f’”" forall j=0,L....,n—1.
k=0
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The direct computation of either DFT or IDFT
requires a time complexity of O(nz).

G. Fast computation of the DFT and IDFT

Then-DFT can be computed efficiently in a time
complexity of O(nlog, n) using the Fast Fourier
Transform (FFT) (Cooley JW. & Tukey JW (1965);

James S. Walker (1996), Heideman MT (1985)) and
so can be the IDFT.

H. Cyclic Convolution

Asequence a=(x;) iscalled n-periodic if
=a, forall 7j=0,1,2,....

an+j

Let a=(a;), b=(b;) be two n-periodic sequences
of numbers. Then their cyclic convolution is defined
by the sequence ¢ =(c; ) , where

n-1
¢ = z ambi—m
m=0

Notice that ¢, is also denoted by a * b;.

(James S. Walker(1996)).

. Theorem: Fast Computation of Cyclic
Convolution

Let a=(a;),b=(b;) be two n-periodic sequences

of numbers such that their n-point DFTs are given

by{4,,4,,...4,}.{By,Bi,....B,_;}, respectively.

Then the n-point DFT of the sequence ¢ =(a *b;)

is given by

{4yBy, A,B,,..., A, B, |}

We ignore the proof of this theorem, but the
interested readers are referred to James S. Walker
(1996).

From this theorem, it can be quickly seen that
c=(axb;)=IDFT({4yBy, 4 By,.... 4, B, })

=IDFT(DFT(a). * DFT(b)),
where “.*' operates the element-wise multiplication
of DFT (@) and DFT (b) .

Now this concludes that the cyclic convolution can
be computed efficiently using only three FFTs,
namely one IFFT and two FFTs.

J. Circulant Matrix

An 7 x n circulant matrix has the following form:



Co € Cn-1
C= Cr1 Co Cn2
(S T Co

K. Theorem: Fast: Circulant matrix-vector
multiplication

The product z=Cy, of an nx ncirculant matrix C
and a column vector of size ncan be performed in a
time complexity of O(nlog,n) (Tang Z.et
al .(2004)).

It should be noted that the circulant matrix—vector
product can be written as the cyclic convolution of
the sequences c=(Cp,C1se-sCyy) and
Y=(0>Y15---»Yu-1) suchthat

n-1

— ¥k —
Z;=)yUe _Zymcl—m'
m=0

T Therefore, the circulant matrix—vector product
can be computed efficiently using the technique of
the fast computation of cyclic convolution.

L. Non-Uniform Discrete Cosine Transform

Let {xy,x;,....x,_;} be aset of non-uniform points
in [0,n]. Then, the n- point Discrete Cosine
Transform (DCT) of an input  vector
c=(cy,Cy,-..,C¢,) is defined by the collection

{Cy,Cy5...,C,_1 }, Where

n-1 .
X
C; :ch cos(] k
=0 n

J forall j=0,1,...,n—1..
= jrx
_ k
If x, =k, then C; —ch cos( .

k=0 j
This type of discrete cosine transform is called the
uniform discrete cosine transform (UDCT)(James S.
Walker (1996)).

M. Fast computation of uniform (UDCT).

n-1 n-1
Tk o
C; :ZCk cos[%j:Re.(che ’2”*’/‘/2"}
=0

k=0
This is the DFT of the vector ¢ with length 21 with
n zeros padded and hence the UDCT can be
computed efficiently using the FFT.

11l. FORMULATION OF ACCURATE FDLT ALGORITHM (MFDLT))

Let x be a typical sample pointin X
Then from (2), we have
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Liy(x)=a,L(x)+b,L,_(x),

3)
2] +1 /
where a; =——, b, =———.
I+1 l+1
Let Y={yy,i,.---V,1} be a set of real numbers
defined by the relation:

cos| Ly, |=x
PRy j

forall j=0,1,...,n—1.
n -1 .
yj=—cos (x;) for j=0,1,....,n-1.
Vs

(4)

Then (4) gives

This is the novelty of our algorithm.
Let Z,=(Z,(n-1),...,Z,;0),....Z,(-n)"
vector defined for each [=0,1,...,n—1 by

”ky n—1 ﬂ_kyj
" L )= ij cos " /
=0

(5)

be a

Z(k)= <f, COS(

forall k=—n,—n+1,...,n—1.
Now,

Za(h)=aq, < f,cos(ﬂ—kyj cos(ﬂle > +b,Z, (k)
n n

(6)

Also, we have the following trigonometric identity:

ool Y1) ofr2)

()
The combined result of (5) and (6) yields the
following recurrence:
Zin(K)y=w, Zy(k+ D) +v, Z;(k =1) + w, Z)_y (k),
(8)
where u; =v, =q,/2 and w, =b,.
Now, we employ the idea presented in Driscoll
(1997) to compute Z,; for [=0,1,2,...,n—1.
Our aim is to compute Z,(0) forall /=0,1,...,n—1.
We will compute Z,(0)in three phases:

1) Initial phase : Computation of Z,,.

Equation (5) computes Z,, where

n—1 kv,
Zo(k)=2fj COS[” ny‘/ J

J=0

Now, we have L, = Z,(0).

2) Intermediate phase: Computation of Z, .

We get from (7)

Z(k)=ugZy(k+1)+vyZy(k—-1)



for all k=0,1,...,n—1.From the equation, we can
calculate Z with an extra 37 operations and we
then have L, =Z,(0).

3) Final phase: of for
I=12,...,n—1.

(8) can be rewritten in the following matrix form :

Computation Z,

Zyq =AW, ,v)Z, +wiZ, 9)
where

u, 0 v, 0 ... 0 O

0 u, 0 0

0 u 0 0

Auy,v)) = . . . .

0 0 0 ... uy 0 v

v 0 0 ... 0 u O

isa 2nx(2n+2) rectangle matrix and / denotes a
2n % 2n identity matrix.
Let W, be a vector defined by
W,=2,
Wy =2,

Win=Cluy,v)Z +wiZ,,, (10)
where C(u;,v)) is a 2nx2n circulant matrix
defined by

0 v 0 ... 0 0 u
u, 0 v, -~ 0 0 O
O w, 0 -~ 0 0 O
Clug,vp)=| . . . . c
0 0 0 -~ uy 0 v
vy 0 0 - 0 u O

Then it is not difficult to see that for s=1,2,...,

Wi =01 -1)...0( - 5) Ziose (11)
VVZ+1 4

I—s
where Q(;) isa 4nx4n matrix defined by

0
Q) =(

for j=L2,...
Wj[ C(l/l )J or] i) s

iYi
and O and [ denote the 2nx2n zero matrix and
identity matrix, respectively.

Also, from (9) and (11), it can be easily shown that
Wies1 () =Z1 () and Wy (j) = Z;,, () forall

j=—(n-s-1),...0,...,(n—s-1).

Let R(p,q9)=q)Qg—-1)---Q(p+1), where p
and ¢ are non-negative integers such that
q=p+s.
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Then (11) gives the following equation

( W2 j:R[O’Ej[ZOJ
W 202,
The (12) yields that

Wayn(DN=2Z,,,(j) andthat W, »,,())=Z,,2.,(J)
for j=—(n/2=1),....0,....(n/ 2+1).

(12)

This means that we can correctly calculate Z,,, ()
and Z,,5,1(j) from Z,(j) and Z, ()

for
Jj=—(n/2-1),...,0,...,(n/2+1).

In particular, we then have Z, ,,(0) and Z,,,,,,(0).

In this case, since R(0,n/2)is comprised of four
2nx2n circulant matrices, the product on the right
of (12) can be computed efficiently by operating
four fast circulant matrix vector multiplications. To
save number of operations for the remainder of the
computation, we wish to exploit the Divide and
Conquer algorithm: we first split the entire problem
into two sub problems of size n/2 each. Also, It is
worthwhile to note that the outer upper and lower
quarters of W, and W, do not affect the
computation of Z,(0) for [<n/2 and those of
Z,» and Z,,,,, do not affect the computation of
Z,;(0) for I>n/2+1. Therefore, we proceed the
second stage by throwing away those quarters from
Zy,Z,,Z,», and Z,,,.;. Now from (11), we

calculate W, 4, W, 441:W3,14> and W3, 4, as
follows:

/4 Z

( nl4 J:R(O,EJ[ OJ (13)

W, an 40\ Z,

w. Z

( n/d J=R[i3—"j( Oj (14)

W34 2 47
Then, (13) and (14) give

Z,,14(0), Z,,/4:1(0), Z3,,/4(0), and
Z3,74+1(0). At the end of the second stage, we

have only two identical sub problems of size n/2
and then the third stage is conducted by again
splitting each of them into two sub problems of size
n/4. This means that we have four identical sub
problems of size n/4 each. Now applying the same
method employed in the second stage, we calculate
Z,/84i(0). Z3, 841> Zsy 8- and Zg, 5, for i=0,1,

from (11). Now, keeping on running the same



procedure up to the problem size of 4, we can
accomplish the entire computation. The reader may
find further details regarding this and the efficient
computation of the storage of this algorithm in
(Driscoll JR(1997); Gunarathna. W. A and Nasir. H.
M(2013)).

. IMPLEMENTATION AND NUMERICAL
RESULTS

MATLAB implementation of our algorithm
(MFDLT)has been written in MATLAB Binary Tree
Data Structure. We also used the fft () function in
MATLAB to compute DFT. This section shows
numerical results of the numerical experiments,
which have been carried out, in order to test the
performances of the algorithm. All the
computations were performed on a personal
computer with Intel(R) Pentium 2.1 GHz processor,
with 2.00 GB RAM, 64 bit Windows 7 operating
system using MATLAB version 12 codes.

A. Numerical Example Experiments
1) Compute the DLT defined by

n-1
Zj :kaLj(xk)
k=0

for j=0,1,...,n—1.In this experiment, the samples
X ={xy,%|,...,X,_; } are randomly chosen from the
interval [0,1] and so are the input vectors

S=fos fis--es fumr) from [0,1].

Further, we consider the brute force computation
of the initial phase

n—1
zo(k):ij,. oos[’d;ny for k=0,1,....,n—1.

Jj=0

2)  We compute the DLT defined by
n-1
L; =" fil;(x;) for j=0,1,..,n—1.
k=0
In this experiment, the samples
X ={xy,x,...,X,_ yare uniformly distributed in

the interval, [0,1], where x; =cos(iz/n) for each
i=0,1,...,n—1and the input vectors
=, f1>---»f,_1) arerandomly chosen from the
interval [0,1]. We compute the initial phase given
below using the fast cosine (uniform) transform.
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n-1
Zo(k):ij cos(ﬂkyj] for k=0,1,...,n—1.
n
Jj=0

In both experiments, the accuracy of the algorithm
is tested by computing relative errors (RE) with
respect to the following formulae:

max |z; —z
REQO _ O<isn—1 - (15)
max ;
el ol
(16)

In both (15) and (16), z and z" stand for the result
computed by our algorithm and the corresponding
result computed by the direct computation of the
recurrence given by Equation (8), respectively.
Equation (15) computes the relative errors with
respect to the maximum norm or infinity norm,
while Equation (16) computes the relative errors
with respect to the p-norm with p=2. MATLAB
rand () function has been used to generate random
sample points xand random input vectorsf. To
compute MATLAB execution times (in seconds) for
the MFDLT and DLT, MATLAB cpu time function has
been operated.

B. Numerical Results

Table 1. Numerical results of Experiment 1

n Errors Time(sec.)
RE_ RE, MFDLT | DLT
128 | 2.422E-15 | 9.668 E-15 | 0.7956 | 0.3432
256 | 4.097 E-15 | 1.606 E-14 | 5.3508 3.0109
512 1.247E-13 | 6.805E-13 | 95.9250 | 82.7117
1024 | 4.751E-13 | 2.996 E-12 | 2060.4 1997.0

Table 2. Numerical results of Experiment 2

n Errors Time(sec.)
RE RE, MFDLT DLT
128 1.644 E-14 | 8.470E-14 | 0.4524 | 0.3120
256 5.331E-14 | 3.247 E-13 1.8096 | 3.3072
512 2.354 E-13 | 2.108 E-12 | 8.8764 | 94.942
1024 | 1.699 E-12 | 2.21 1E-11 | 52.3383 | 2122.3




V. DISCUSSION

In accordance with the experiment results, it can be
observed from Tables 1-2 that the relative errors
RE, and RE, are very small. Therefore, it is
confirmed that the MFDLT permits high accuracy to
be attained. Table | demonstrates that the MATLAB
execution times elapsed for the MFDLT are not less
than those of the DLT. This is due to the fact that in
Experiment 1, the costly direct computation of the
NUDCT was used; however this can be avoided by
accelerating the NUDCT. Table 2 shows that the
MFDLT is faster than the DLT when 7 >128 (about
40 times faster at 7=1024). This is because we
have used the uniform fast (exact) fast cosine
transform for computing the initial phase.
Furthermore, these experiments display that initial
phase is more costly than the other phases of the
MFDLT algorithm.

V. CONCLUSION

In this paper, we have proposed a more accurate
algorithm for the recently developed fast algorithm
for discrete Legendre polynomial transforms. The
proposed algorithm permits high accuracy to be
attained. The initial phase of the recently developed
algorithm was computed by the fast Vandermonde
matrix vector product. Part of the Vandermonde
matrix vector-product takes advantage of efficient
computation of coefficients of the monomials in the
form bel_escX(x—xj), where X is a related

These

coefficients are notoriously sensitive (Moore
SS(1993)) to make the Vandermonde matix-vector
product unstable in a reasonable computer
arithmetic. However, instead of that, the proposed
algorithm has used the discrete cosine transform,
which is more stable in computer arithmetic than
monomials. In addition to that, this modification
does not bring down the efficiency of the previously
developed algorithm whenever the discrete cosine
transform is computed efficiently. Some
approximate but stable algorithms with reasonable
time complexity, for example O(nlogn), for the

sample given by X ={xy,x,...,x,;}.

efficient computation of the non-uniform discrete
cosine transforms are also available in the literature
(Tian, B., & Liu, Q. H. (1999)).
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