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Abstract— Let 
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l lin
xaxp 




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0)( be a univariate polynon  

mial of degree 1n defined on ][x ,where 

][x denotes the ring of polynomials in x over  , the 

field of real numbers and let },,{ 10 


n
xxS  be any  set 

of m distinct elements in . The role of Multipoint 

Evaluation Problem (MEP) is to compute the finite  

sum
l

i

n

l lin
xaxp 





1

0)(  for all .,,, mi 10  These types 

of evaluations are used most  abundantly in many areas 
such as Engineering, Physics, Medicine, and Weather 
forecasting. The MEP of interest in this paper is restricted 
to the case where nm  .The paper proposes a new 

algorithm with asymptotic time complexity of )( 2nO for 

the MEP. For the sake of simplicity, we assume that 

,kn 2  where ,,, 210k .We explore performance of 

 the algorithm by means of numerical experiments. The 
numerical results confirm that the algorithm is faster than 
Estrin’s method and that it is as accurate as Estrin’s 
method.  

 
Keywords— Multipoint evaluation problem, Horner’s 
rule, Estrin’s method. 

 

I. INTRODUCTION 
The evaluation of a polynomial at several points, referred 
in the literature as the Multipoint Polynomial Evaluation 
problem (MPE), is one of the fundamental tasks in 
Computational Mathematics, which holds indispensable 
applications arising from many areas such as Engineering, 
Physics, Weather forecasting, Medicine, Signal 
processing, and so on. We denote a generic univariate 
polynomial of degree 1n in ][x by 

,in

i in
xap 





1

0 where ][x denotes the ring of 

polynomial in x  over  , the field of real numbers.  
 
In the naive approach for solving the MPE, each term in 

np  is computed independently of the other remaining 

terms in ;np thereby it requires 21 /)( nn  

multiplications and )( 1n  additions, in order to 

evaluate np  at a single evaluation point. Therefore, the 

total number of operations required to evaluate np  at n  

evaluation points is 2223 /)( nnn  ,which is ).( 3nO  In 

the MEP literature, some attempts were also made to 
bring down this prohibitive cost. Horner’s rule, which is a 
sequential algorithm, is known to be a more stable 
algorithm for solving any MPE, which would require 

)( 2nO  arithmetic operations (Dorn, W. S. (1961, 

January). Estrin’s method establishes a parallel algorithm 

for solving the MPE which costs )( 2nO arithmetic 

operations (Estrin, G. (1960, May)).  
 
The standard Discrete Fourier Transform (DFT) which is a 

special case of the MEP where the polynomial np  is 

evaluated at n uniformly located points, 

),,,,(/ 1102  nje nji   on the unit circle in the 

complex plane. The well-known Fast Fourier Transform 
(FFT) solves this kind of the MPE much more efficiently 

and accurately in a cost of )log( nnO 2 (Cooley JW. & 

Tukey JW (1965)). The materials found from the work of 
A Borodin and M Munro in 1975 (Borodin, A. M., & 
Munro, I. H. (1975) pointed out an exact algorithm of 

)log( nnO
2

2  for solving the MPE of size n . These 

authors used modular technique to develop this 
algorithm. Further, J.R.Driscoll, D.M.Healy Jr., and D. 
Rockmore (Driscoll JR, Healy Jr, DM. & Rockmore DN 
(1997), Moore SS. Healy Jr DM. & Rockmore DN. (1993)) 

formulated an )log( nnO
2

2 algorithm. The basic idea of 

this algorithm is that the Vandermonde matrix associated 
with the Vandermonde matrix- vector product equivalent 
to MPE is factored into a product of sparse matrices 
including Toeplitz blocks, so that the fast Toeplitz matrix 
vector product can iteratively be applied to compute the 
Vandermonde matrix vector product more efficiently.  
However, the naive implementation of this algorithm in 
computer arithmetic shows serious numerical stability 
problems.   
 
In this paper, we propose a new sequential algorithm 

with time complexity of )( 2nO , in order to solve the 
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MPE. For the sake of simplicity, it is assumed that 
kn 2 for ,,, 210k . 

 

The organization of this paper is set to have the following 

structure: In Section II, we present preliminaries. Section 

III describes the formulation of the new algorithm, 

Section IV is devoted to present the implementation of 

the algorithms, and Section V exhibits the numerical 

results. Section VI concentrates on the discussion of the 

numerical results. Finally, we give conclusions in Section 

VII. 

II. PRELIMINARIES 

This section presents the multipoint evolution problem 
and some known algorithms, namely, Horner’s method 
and Estrin’s method for solving the MPE.  
 

A. Multipoint Evolution problem   

Let 1
110


 n

nn xaxaaxp )(  be a generic poly 

nominal of degree 1n defined on  and let 

},,,{
m

xxxS 10 be any finite subset of  including 

)( 1 nm distinct evaluation points. Then the problem 

of evaluation of the polynomial )(xpn  at every point in 

S is called the Multipoint Evaluation Problem. To put it 
another way, it is required to compute the finite sum: 

l

i

n

l lin xaxp 





1

0
)(  for all .,,, mi 10  

This paper is restricted to address the case where nm  .  

 

B. Horner’s rule(Hor.) 

Let )(xq kn  be a polynomial of degree kn 1  defined 

by  

,)( kn
nkkkkn xaxaxaaxq 
  1

1
2

21   

so that 

)()( xxqaxq knkkn 1   for all .,,, 110  nk   

It should be noticed that  

11 


n
axq )( and that ).()( xqxp nn   

Now, for a given fixed value of ,x )(xqn  can recursively 

be computed in 1n additions and 1n multiplications 

and then we get ).()( xqxp nn   
 
This method is called Horner’s rule and it further can be 
expressed by the following nested multiplication form: 

).))((()(  xaaxaxaxaxp nnnn 12310  
 
 

For example, )(xp8  has the following form: 

)))))).(((((( xaaxaxaxaxaxaxa 76543210 

 

The total number of operations required to evaluate 

)(xpn  at n  evaluation points is nn 22 2   which implies  

that the computational complexity of Horner’s rule for  

solving  MPE is ).( 2nO  

 

C. Estrin’s method(Est.) 

Let 122  iii xaab  , where ./,,, 1210  ni   

The idea of Estrin’s method is that polynomial )(xpn  is 

expressed in terms of ib ’s, so that  
2

22
4

2
2

10


 n
lnn xbxbxbbxp )()(  . 

For example, 
6

3
4

2
2

108 xbxbxbbxp )( , 

where xaab iii 122   for .,,, 3210i  

The number of additions and the number of 

multiplications should be devoted to compute ib ’s for 

every 1210  /,,, ni   are 2/n  and 2/n , 

respectively. 

It can be easily seen that computing power term kx  in 
the way that x  is multiplied by itself 1k  times is 

rather time consuming. For example, 

xxxxxxxxx 8  takes 7 multiplications. 
However, this can be reduced to 3 multiplications by pre-

computing 2x , 4x  and then writing 8x  as: 

))(( 448 xxx 
 

(Nawaz Khan, S. (2010)). 
 
We may exploit this idea to compute power terms in 
Esttrin’s method, in order to save number of operations. 
 
In Estrin’s expansion, it is required to generate all the 
power terms in the form of  

mx )( 2  for all )./(,, 121  nm   

We use the relation that  

)()()( 2122 xxx mm   for all )./(,, 121  nm   

This implies that: 

).()()(

)()()(

)()()(

)()()(

)/()/( 2222122

23242

22232

2222

2

xxx

xxx

xxx

xxx

xxx

nn  











 
 

In this way, the total number of multiplications required 

to generate all the power terms is )./( 12 n  
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Therefore, the total number of operations required to 

evaluate )(xpn  at n  evaluation points is  

 

.)]/()/(//[ nnnnnnn 22121222 2 
 
 

This shows that the computational complexity of Estrin’s  

method for solving MPE is ).( 2nO
 

 
III. FORMULATION OF NEW ALGORITHM 

Let .Sx   

Define )()()( 11 





j
ni

nj
i

j
i j

j aaa   

 for all kj ,,21  and ,,,, 110  jni   

where ii aa 
)(0  for all 110  ni ,,,   and j

j nn 2/  

for all .,,, kj 21  

Now, 
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1
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i
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Then )(1p  can again be written as  
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Letting ,)(
)(







1

0

2
2

2n

i

i
iap  we can write )(2p , in 

terms  of )(3p  as  

)()(
)(

 3

0

3
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pap
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i
i 


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Then at the j th step, we get 






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where  
)()()( j

ni

nj

i

j

i j

j aaa
1
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






   

for all .,,, 110  kj   

Noticing the fact that )()(  jpp   for all kj ,,, 10 , 

we get,  
)()()(

)()(
1

1
1

00



kkk

k aaapp  . 

 
To  illustrate this, consider case where .8n  

That  is  

.)( i

i

i xaxp 



7

0
8  

 

Suppose that it is required to evaluate )(xp8 at .x  

 
Step 1 

Compute the vector ),,,(
)()()()( 1

3
1

2
1

1
1

0 aaaa , 

where  4
41

 iii aaa 
)(  for .,,, 3210i  

 
Step 2 

Compute the vector ),(
)()( 2

1
2

0 aa ,  

where )()()( 2
2

212
 iii aaa   for .,10i  

 
Step 3 

Compute the vector )(
)(3

0a ,  where 

)()()( 2
1

2
0

3
0 aaa  . 

Therefore, 

                                
.)(

)(3
0ap   

 
 
 

1)  Operation count  
The power terms that must be computed in the new 

algorithm are 1242 /,,, n  only. 

 
Using the efficient  method discussed  in Section  II  for  
generating power terms, one can easily show that the  
number of operations  needed to compute  all the power  

terms  required in the new algorithm is ).( 1k
 

In the first step, it is required to compute: 
  

2
21

/
/)(

ni
n

ii aaa    for all ./,,, 1210  ni   
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Therefore, the number of operations taken is ..n  Making 
the same argument, the number of operations required 
for Step II is 2/n  and thus the number of operations that 
we may devote, in order to compute all the k steps is  

 

).( 12
222 12




n
nnn

n
k


 

 
Therefore, the total number of operations required to  

evaluate )(xpn at a single point is  

 
.)( 112  kn
 

 
Therefore, the total number of operations required to  

evaluate )(xpn  at n  such points is  

 

])([ 112  knn nknn  32 2   

                                         ).log( 32 2  nnn  
 

This  evidently confirms that the computational cost of  

the new algorithm is ).( 2nO
 

 

IV. IMPLEMENTATION 

This section focuses on implementing the previously 
described algorithm   in Section III. First, the Horner’ rule 
is described. Then, Estrin’s method is discussed. Finally, 
the implementation of the new algorithm is presented. 
 
 

Algorithm 1: Horner’s rule 

INPUT: ),,,( 110  nxxxS  , ),,,( 110  naaap   

OUPUT: ))(,),(),(( 110  nxpxpxpV   

STAGES: 
               for 1i  to do n  

                        00 q  

                      for  1j  to do n  

                                jq = 11  jqiSjnp )()(  

                                
                       end 

                      nqiV )(  

               end 
 
 

Algorithm 2: Estrin’s method 

INPUT: ),,,( 110  nxxxS  , ),,,( 110  naaap   

OUTPUT:
 

))(,),(),(( 110  nxpxpxpV   

STAGES: 

 

                   for 1i  to do length ( S ) 

                       Polyval=0 

                          for 1j  to length (p)/2 

                                )()()( jpiSjpb j 212   

                          Polyval=Polyval+
12 j

j iSb ]))([(  

                          end 

                       )(iV Polyval 

                 end 
 
 

Algorithm 3: New algorithm 

 

INPUT: ),,,( 110  nxxxS  ),,,,( 110  naaap 
 

          nK 2log  

OUTPUT:
 

))(,),(),(( 110  nxpxpxpV   

STAGES:  

for 0i  to do length ( 1)S  
           ix  

     for 0j to do length ( p )-1 

                  jj aa 
)(0

 

                   
jj

n
n

2
  

             for  1k  to do K  

                   for 0m  to do 12 1 kn /  
 

                       

)()()( j

jnk

jnj

k

j

k aaa
1

11




   

                            end 
                   end 
          end 

                    )(
)(

K
ap 0                   

end 
 
 
 

v. NUMERICAL RESULTS 
This section shows numerical results of two numerical 
experiments carried out to test the performance of the 
algorithm. All the computations were performed on a 
personal computer with Intel(R) Pentium 2.1 GHz 
processor, with 2.00 GB RAM, 64 bit windows 7 operating 
system using MATLAB version 12 codes.  
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A. Numerical  Experiments 
1)  In this experiment, the sets of evaluations points, 

},,,{ 110  nxxxS  are randomly chosen from 

the interval ],[ 10 and so are the coefficients, sai '  

of polynomial .np The polynomial np  is 

computed on S  for various values of n .  
 

2)  The  experiment focuses on the evaluation of the 

polynomial np  given by: 

12321  n
n nxxxxp )( . 

 
The sets of evaluations points S are randomly chosen 

from the interval [0, 1]. 
 

In both experiments, the accuracy of the algorithm is 

described by means of relative errors (RE). The relative 

error of the output vector 

))(,),(),(( 110  nxpxpxpV  is computed with respect 

to the maximum relative error (MRE), the infinity norm 

and the 2-norm defined through the following the 

formulae, respectively: 

 

 

*

*

,,,
maxMRE

i

ii

ni v

vv 


 110 
                                 (1) 

 

*

*

max

max

i
ni

ii
ni

v

vv
RE

10

10







                                         (2) 

 
 















1

0

2

1

0

2

2 n

i

i

n

i

ii

v

vv

RE

*

*

                                      (3) 

 

 

In the above error formulae, v  and *v  stand for the 

result computed by either the new algorithm or Estrin’s 

method and the corresponding result computed by the   

Horner’s rule, respectively. MATLAB rand () function has 

been used to generate all sets of random evaluation 

points and random polynomials. The efficiency of the 

new algorithm and Estrin’s method is demonstrated in 

terms of CPU times. MATLAB CPU time function has been 

operated to compute the CPU times. 

 

 

In both experiments, the accuracy and efficiency of the 

new algorithm are compared with those of Estri’s 

method. We have used Horner’s rule as the reference 

point. 

 
B. Numerical Results 
Table 1 and Table 3 exhibit relative errors, namely, MRE  

RE  and ,RE2 computed for various values of n in 

Experiment 1 and Experiment 2, respectively, while Table 
2 and Table 4 demonstrate the corresponding CPU times 

(in seconds) elapsed to evaluate polynomial np . 

 
 
 
1) Numerical results of Experiment 1 

 

Table 1.  Relative errors 
 

New algo. 1510  Est. 1510  

n  MRE RE  2RE  MRE RE  2RE  

64 1.08 0.248 0.208 0.671 0.186 0.167 

128 21.5 0.959 0.479 21.2 1.44 0.883 

256 72.9 1.49 0.879 107 4.49 2.08 

512 34.6 1.42 0.965 28.45 5.34 2.97 

1024 836 2.61 1.77 179 12.1 6.54 

2048 743 2.73 1.17 176 29.9 14.5 

4096 8.51 4.61 1.74 58.5 57.9 28.9 

 
 
 
 

Table 2.  CPU times 
 

CPU times in seconds 

n  Hor. New algo. Est. 

64 0.3120 0.3276 0.3432 

128 0.3120 0.3588 0.3900 

256 0.3276 0.3744 0.6240 

512 0.3900 0.6864 1.747 

1024 0.6240 1.700 13.92 

2048 1.529 6.365 109.3 

4096 5.164 23.63 1011.6 
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2) Numerical results of Experiment 2 
 

Table 3.  Relative errors 
 

 

 
Table  4.  CPU times 

 

CPU times in seconds 

n  Hor. New algo. Est. 

64 0.000 0.016 0.016 

128 0.016 0.016 0.062 

256 0.016 0.094 0.296 

512 0.078 0.312 1.092 

1024 0.234 1.217 4.98 

2048 0.998 4.29 42.9 

4096 3.136 11.44 386.4 

 
V. DISCUSSION 

 Based on the numerical results, it can be seen from Table 

1 and Table 3 that the MRE’s of the new  algorithm are 

the same as those of Estrins’ method up to at least 9 

significant figures , for example , in Experiment 2, MRE of 

the new  algorithm = ,. 1010233   and MRE of Estrin’s 

method = 1110068 .  when ,4096n whereas the 

corresponding MRE’s of the new algorithm and Estrin’s 

methode in Experiment 1 are 151058 .  and       

,. 1410845  respectively when ,4096n while in both 

experiments, RE and 2RE of the new algorithm are 

almost equal to those for Estrin’s method up to 14 

significant figures for all the values of n stipulated. In 

fact, RE and 2RE of the new algorithm are slightly 

smaller than those of Estrin’s method. The preceding 

results establish the fact that the accuracy of the new 

algorithm is almost the same as that of Estrin’s method 

(in fact the accuracy of the new algorithm is slightly 

better than the accuracy of Estrin’s method).  

 

Table 2 and Table 4 demonstrate that in both 

experiments, the new algorithm is faster than Estrin’s 

method when 128n (in Experiment 1, the new 

algorithm is about 43 times faster at 4096n ,  while 

Horner’s rule is about 196 times faster at 4096n and in 

Experiment 2, the new algorithm is about  34 times faster 

and Horner’s rule is about 123 times faster at 4096n ). 

Indeed, the number of operations required to compute 

all power terms ( )log( nnn 2 )in the new algorithm  is 

smaller than that of Estrin’s method ).( nn 22  Further it 

also should be taken into account that the number of 

arithmetic operations taken by the new algorithm is 

higher than those of Estrin’s method, whereas the new 

algorithm is faster than Estrin’s method in practical 

computation. Perhaps, this would be due to the fact that 

Estrin’s method is a parallel algorithm, while the Horner’s 

rule and the new algorithm are both a sequential or serial 

algorithms. Although the focus of this paper was 

restricted to the polynomials of degree 1n , where 
kn 2  for ,,, 21k the new  algorithm can be used to 

address the MEP with general polynomials. 

 
VI. CONCLUSION  

In this paper, we have developed a new algorithm, in 

order to evaluate a univariate polynomial of degree 

1n at n  evaluation points or to solve a multipoint 

evaluation problem (MPE) consisting of a univariate 

polynomial of degree 1n together with n  evaluation 

points. The asymptotic time complexity of the algorithm 

is )( 2nO , which is the same as the that of Horner’s 

method or Estrin’s method. It is concluded that the new 

algorithm is more suitable for sequential implementation 

than Estrin’s method. The future interest of this paper is 

subject to bring down the complexity of the new 

algorithm to a quasilinear time complexity, for example  

).log( nnO 2  
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