
Proceedings of 8th International Research Conference, KDU, Published November 2015

90

A New Algorithm for Multipoint Evaluation of Univariate
Polynomials

WA Gunarathna1# and HM Nasir2

1Department of Mathematics, Faculty of Engineering, General Sir John Kotelawala Defence University, Ratmalana, Sri
Lanka

2Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Oman
#gunarathnawa@yahoo.com

Abstract— Let
l

i

n

l lin
xaxp 





1

0)(be a univariate polynon

mial of degree 1n defined on][x ,where

][x denotes the ring of polynomials in x over  , the

field of real numbers and let },,{ 10 


n
xxS  be any set

of m distinct elements in . The role of Multipoint

Evaluation Problem (MEP) is to compute the finite

sum
l

i

n

l lin
xaxp 





1

0)(for all .,,, mi 10 These types

of evaluations are used most abundantly in many areas
such as Engineering, Physics, Medicine, and Weather
forecasting. The MEP of interest in this paper is restricted
to the case where nm  .The paper proposes a new

algorithm with asymptotic time complexity of)(2nO for

the MEP. For the sake of simplicity, we assume that

,kn 2 where ,,, 210k .We explore performance of

 the algorithm by means of numerical experiments. The
numerical results confirm that the algorithm is faster than
Estrin’s method and that it is as accurate as Estrin’s
method.

Keywords— Multipoint evaluation problem, Horner’s
rule, Estrin’s method.

I. INTRODUCTION
The evaluation of a polynomial at several points, referred
in the literature as the Multipoint Polynomial Evaluation
problem (MPE), is one of the fundamental tasks in
Computational Mathematics, which holds indispensable
applications arising from many areas such as Engineering,
Physics, Weather forecasting, Medicine, Signal
processing, and so on. We denote a generic univariate
polynomial of degree 1n in][x by

,in

i in
xap 





1

0 where][x denotes the ring of

polynomial in x over  , the field of real numbers.

In the naive approach for solving the MPE, each term in

np is computed independently of the other remaining

terms in ;np thereby it requires 21 /)(nn

multiplications and)(1n additions, in order to

evaluate np at a single evaluation point. Therefore, the

total number of operations required to evaluate np at n

evaluation points is 2223 /)(nnn  ,which is).(3nO In

the MEP literature, some attempts were also made to
bring down this prohibitive cost. Horner’s rule, which is a
sequential algorithm, is known to be a more stable
algorithm for solving any MPE, which would require

)(2nO arithmetic operations (Dorn, W. S. (1961,

January). Estrin’s method establishes a parallel algorithm

for solving the MPE which costs)(2nO arithmetic

operations (Estrin, G. (1960, May)).

The standard Discrete Fourier Transform (DFT) which is a

special case of the MEP where the polynomial np is

evaluated at n uniformly located points,

),,,,(/ 1102  nje nji  on the unit circle in the

complex plane. The well-known Fast Fourier Transform
(FFT) solves this kind of the MPE much more efficiently

and accurately in a cost of)log(nnO 2 (Cooley JW. &

Tukey JW (1965)). The materials found from the work of
A Borodin and M Munro in 1975 (Borodin, A. M., &
Munro, I. H. (1975) pointed out an exact algorithm of

)log(nnO
2

2 for solving the MPE of size n . These

authors used modular technique to develop this
algorithm. Further, J.R.Driscoll, D.M.Healy Jr., and D.
Rockmore (Driscoll JR, Healy Jr, DM. & Rockmore DN
(1997), Moore SS. Healy Jr DM. & Rockmore DN. (1993))

formulated an)log(nnO
2

2 algorithm. The basic idea of

this algorithm is that the Vandermonde matrix associated
with the Vandermonde matrix- vector product equivalent
to MPE is factored into a product of sparse matrices
including Toeplitz blocks, so that the fast Toeplitz matrix
vector product can iteratively be applied to compute the
Vandermonde matrix vector product more efficiently.
However, the naive implementation of this algorithm in
computer arithmetic shows serious numerical stability
problems.

In this paper, we propose a new sequential algorithm

with time complexity of)(2nO , in order to solve the

mailto:#gunarathnawa@yahoo.com

Proceedings of 8th International Research Conference, KDU, Published November 2015

91

MPE. For the sake of simplicity, it is assumed that
kn 2 for ,,, 210k .

The organization of this paper is set to have the following

structure: In Section II, we present preliminaries. Section

III describes the formulation of the new algorithm,

Section IV is devoted to present the implementation of

the algorithms, and Section V exhibits the numerical

results. Section VI concentrates on the discussion of the

numerical results. Finally, we give conclusions in Section

VII.

II. PRELIMINARIES

This section presents the multipoint evolution problem
and some known algorithms, namely, Horner’s method
and Estrin’s method for solving the MPE.

A. Multipoint Evolution problem

Let 1
110


 n

nn xaxaaxp )(be a generic poly

nominal of degree 1n defined on and let

},,,{
m

xxxS 10 be any finite subset of  including

)(1 nm distinct evaluation points. Then the problem

of evaluation of the polynomial)(xpn at every point in

S is called the Multipoint Evaluation Problem. To put it
another way, it is required to compute the finite sum:

l

i

n

l lin xaxp 





1

0
)(for all .,,, mi 10

This paper is restricted to address the case where nm  .

B. Horner’s rule(Hor.)

Let)(xq kn be a polynomial of degree kn 1 defined

by

,)(kn
nkkkkn xaxaxaaxq 
  1

1
2

21 

so that

)()(xxqaxq knkkn 1  for all .,,, 110  nk 

It should be noticed that

11 


n
axq)(and that).()(xqxp nn 

Now, for a given fixed value of ,x)(xqn can recursively

be computed in 1n additions and 1n multiplications

and then we get).()(xqxp nn 

This method is called Horner’s rule and it further can be
expressed by the following nested multiplication form:

).))((()( xaaxaxaxaxp nnnn 12310  

For example,)(xp8 has the following form:

)))))).((((((xaaxaxaxaxaxaxa 76543210 

The total number of operations required to evaluate

)(xpn at n evaluation points is nn 22 2  which implies

that the computational complexity of Horner’s rule for

solving MPE is).(2nO

C. Estrin’s method(Est.)

Let 122  iii xaab , where ./,,, 1210  ni 

The idea of Estrin’s method is that polynomial)(xpn is

expressed in terms of ib ’s, so that
2

22
4

2
2

10


 n
lnn xbxbxbbxp)()( .

For example,
6

3
4

2
2

108 xbxbxbbxp )(,

where xaab iii 122  for .,,, 3210i

The number of additions and the number of

multiplications should be devoted to compute ib ’s for

every 1210  /,,, ni  are 2/n and 2/n ,

respectively.

It can be easily seen that computing power term kx in
the way that x is multiplied by itself 1k times is

rather time consuming. For example,

xxxxxxxxx 8 takes 7 multiplications.
However, this can be reduced to 3 multiplications by pre-

computing 2x , 4x and then writing 8x as:

))((448 xxx 

(Nawaz Khan, S. (2010)).

We may exploit this idea to compute power terms in
Esttrin’s method, in order to save number of operations.

In Estrin’s expansion, it is required to generate all the
power terms in the form of

mx)(2 for all)./(,, 121  nm 

We use the relation that

)()()(2122 xxx mm  for all)./(,, 121  nm 

This implies that:

).()()(

)()()(

)()()(

)()()(

)/()/(2222122

23242

22232

2222

2

xxx

xxx

xxx

xxx

xxx

nn  











In this way, the total number of multiplications required

to generate all the power terms is)./(12 n

Proceedings of 8th International Research Conference, KDU, Published November 2015

92

Therefore, the total number of operations required to

evaluate)(xpn at n evaluation points is

.)]/()/(//[nnnnnnn 22121222 2 

This shows that the computational complexity of Estrin’s

method for solving MPE is).(2nO

III. FORMULATION OF NEW ALGORITHM

Let .Sx 

Define)()()(11 





j
ni

nj
i

j
i j

j aaa 

 for all kj ,,21 and ,,,, 110  jni 

where ii aa 
)(0 for all 110  ni ,,,  and j

j nn 2/

for all .,,, kj 21

Now,

i

n

i

ni
n

n

i

i
i

n

i

i
i

aa

app


























12

0

2
2

12

0

1

0

0

/

/
/

/

)()(








1

0

1

1

1

n

i

i
ni

n
i aa )(








1

0

1
1n

i

i
ia 

)(

Let 






1

0

1
1

1n

i

i
iap 

)(
)(.

Then)(1p can again be written as














14

0

1
4

4
14

0

1
1

/

)(
/

/

/

)(
)(

n

i

i
ni

n

n

i

i
i aap 

 






1

0

11
2

2

2

n

i

i
ni

n
i aa )(

)()(

 






1

0

2
2n

i

i
ia 

)(

Letting ,)(
)(







1

0

2
2

2n

i

i
iap  we can write)(2p , in

terms of)(3p as

)()(
)(

 3

0

3
2

3

pap

n

i

i
i 



.

Then at the j th step, we get







jn

i

ij
ij ap

0

1


)(
)(,

where
)()()(j

ni

nj

i

j

i j

j aaa
1

11








 

for all .,,, 110  kj 

Noticing the fact that)()( jpp  for all kj ,,, 10 ,

we get,
)()()(

)()(
1

1
1

00



kkk

k aaapp  .

To illustrate this, consider case where .8n

That is

.)(i

i

i xaxp 



7

0
8

Suppose that it is required to evaluate)(xp8 at .x

Step 1

Compute the vector),,,(
)()()()(1

3
1

2
1

1
1

0 aaaa ,

where 4
41

 iii aaa 
)(for .,,, 3210i

Step 2

Compute the vector),(
)()(2

1
2

0 aa ,

where)()()(2
2

212
 iii aaa  for .,10i

Step 3

Compute the vector)(
)(3

0a , where

)()()(2
1

2
0

3
0 aaa  .

Therefore,

.)(

)(3
0ap 

1) Operation count
The power terms that must be computed in the new

algorithm are 1242 /,,, n  only.

Using the efficient method discussed in Section II for
generating power terms, one can easily show that the
number of operations needed to compute all the power

terms required in the new algorithm is).(1k

In the first step, it is required to compute:

2
21

/
/)(

ni
n

ii aaa   for all ./,,, 1210  ni 

Proceedings of 8th International Research Conference, KDU, Published November 2015

93

Therefore, the number of operations taken is ..n Making
the same argument, the number of operations required
for Step II is 2/n and thus the number of operations that
we may devote, in order to compute all the k steps is

).(12
222 12




n
nnn

n
k



Therefore, the total number of operations required to

evaluate)(xpn at a single point is

.)(112  kn

Therefore, the total number of operations required to

evaluate)(xpn at n such points is

])([112  knn nknn  32 2

).log(32 2  nnn

This evidently confirms that the computational cost of

the new algorithm is).(2nO

IV. IMPLEMENTATION

This section focuses on implementing the previously
described algorithm in Section III. First, the Horner’ rule
is described. Then, Estrin’s method is discussed. Finally,
the implementation of the new algorithm is presented.

Algorithm 1: Horner’s rule

INPUT:),,,(110  nxxxS  ,),,,(110  naaap 

OUPUT:))(,),(),((110  nxpxpxpV 

STAGES:
 for 1i to do n

 00 q

 for 1j to do n

 jq = 11  jqiSjnp)()(

 end

 nqiV )(

 end

Algorithm 2: Estrin’s method

INPUT:),,,(110  nxxxS  ,),,,(110  naaap 

OUTPUT:

))(,),(),((110  nxpxpxpV 

STAGES:

 for 1i to do length (S)

 Polyval=0

 for 1j to length (p)/2

)()()(jpiSjpb j 212 

 Polyval=Polyval+
12 j

j iSb]))([(

 end

 )(iV Polyval

 end

Algorithm 3: New algorithm

INPUT:),,,(110  nxxxS ),,,,(110  naaap 

 nK 2log

OUTPUT:

))(,),(),((110  nxpxpxpV 

STAGES:

for 0i to do length (1)S
 ix

 for 0j to do length (p)-1

 jj aa 
)(0

jj

n
n

2


 for 1k to do K

 for 0m to do 12 1 kn /

)()()(j

jnk

jnj

k

j

k aaa
1

11




 

 end
 end
 end

)(
)(

K
ap 0

end

v. NUMERICAL RESULTS
This section shows numerical results of two numerical
experiments carried out to test the performance of the
algorithm. All the computations were performed on a
personal computer with Intel(R) Pentium 2.1 GHz
processor, with 2.00 GB RAM, 64 bit windows 7 operating
system using MATLAB version 12 codes.

Proceedings of 8th International Research Conference, KDU, Published November 2015

94

A. Numerical Experiments
1) In this experiment, the sets of evaluations points,

},,,{ 110  nxxxS  are randomly chosen from

the interval],[10 and so are the coefficients, sai '

of polynomial .np The polynomial np is

computed on S for various values of n .

2) The experiment focuses on the evaluation of the

polynomial np given by:

12321  n
n nxxxxp )(.

The sets of evaluations points S are randomly chosen

from the interval [0, 1].

In both experiments, the accuracy of the algorithm is

described by means of relative errors (RE). The relative

error of the output vector

))(,),(),((110  nxpxpxpV  is computed with respect

to the maximum relative error (MRE), the infinity norm

and the 2-norm defined through the following the

formulae, respectively:

*

*

,,,
maxMRE

i

ii

ni v

vv 


 110 
 (1)

*

*

max

max

i
ni

ii
ni

v

vv
RE

10

10







 (2)















1

0

2

1

0

2

2 n

i

i

n

i

ii

v

vv

RE

*

*

 (3)

In the above error formulae, v and *v stand for the

result computed by either the new algorithm or Estrin’s

method and the corresponding result computed by the

Horner’s rule, respectively. MATLAB rand () function has

been used to generate all sets of random evaluation

points and random polynomials. The efficiency of the

new algorithm and Estrin’s method is demonstrated in

terms of CPU times. MATLAB CPU time function has been

operated to compute the CPU times.

In both experiments, the accuracy and efficiency of the

new algorithm are compared with those of Estri’s

method. We have used Horner’s rule as the reference

point.

B. Numerical Results
Table 1 and Table 3 exhibit relative errors, namely, MRE

RE and ,RE2 computed for various values of n in

Experiment 1 and Experiment 2, respectively, while Table
2 and Table 4 demonstrate the corresponding CPU times

(in seconds) elapsed to evaluate polynomial np .

1) Numerical results of Experiment 1

Table 1. Relative errors

New algo. 1510 Est. 1510

n MRE RE 2RE MRE RE 2RE

64 1.08 0.248 0.208 0.671 0.186 0.167

128 21.5 0.959 0.479 21.2 1.44 0.883

256 72.9 1.49 0.879 107 4.49 2.08

512 34.6 1.42 0.965 28.45 5.34 2.97

1024 836 2.61 1.77 179 12.1 6.54

2048 743 2.73 1.17 176 29.9 14.5

4096 8.51 4.61 1.74 58.5 57.9 28.9

Table 2. CPU times

CPU times in seconds

n Hor. New algo. Est.

64 0.3120 0.3276 0.3432

128 0.3120 0.3588 0.3900

256 0.3276 0.3744 0.6240

512 0.3900 0.6864 1.747

1024 0.6240 1.700 13.92

2048 1.529 6.365 109.3

4096 5.164 23.63 1011.6

Proceedings of 8th International Research Conference, KDU, Published November 2015

95

2) Numerical results of Experiment 2

Table 3. Relative errors

Table 4. CPU times

CPU times in seconds

n Hor. New algo. Est.

64 0.000 0.016 0.016

128 0.016 0.016 0.062

256 0.016 0.094 0.296

512 0.078 0.312 1.092

1024 0.234 1.217 4.98

2048 0.998 4.29 42.9

4096 3.136 11.44 386.4

V. DISCUSSION

 Based on the numerical results, it can be seen from Table

1 and Table 3 that the MRE’s of the new algorithm are

the same as those of Estrins’ method up to at least 9

significant figures , for example , in Experiment 2, MRE of

the new algorithm = ,. 1010233  and MRE of Estrin’s

method = 1110068 . when ,4096n whereas the

corresponding MRE’s of the new algorithm and Estrin’s

methode in Experiment 1 are 151058 . and

,. 1410845  respectively when ,4096n while in both

experiments, RE and 2RE of the new algorithm are

almost equal to those for Estrin’s method up to 14

significant figures for all the values of n stipulated. In

fact, RE and 2RE of the new algorithm are slightly

smaller than those of Estrin’s method. The preceding

results establish the fact that the accuracy of the new

algorithm is almost the same as that of Estrin’s method

(in fact the accuracy of the new algorithm is slightly

better than the accuracy of Estrin’s method).

Table 2 and Table 4 demonstrate that in both

experiments, the new algorithm is faster than Estrin’s

method when 128n (in Experiment 1, the new

algorithm is about 43 times faster at 4096n , while

Horner’s rule is about 196 times faster at 4096n and in

Experiment 2, the new algorithm is about 34 times faster

and Horner’s rule is about 123 times faster at 4096n).

Indeed, the number of operations required to compute

all power terms ()log(nnn 2)in the new algorithm is

smaller than that of Estrin’s method).(nn 22 Further it

also should be taken into account that the number of

arithmetic operations taken by the new algorithm is

higher than those of Estrin’s method, whereas the new

algorithm is faster than Estrin’s method in practical

computation. Perhaps, this would be due to the fact that

Estrin’s method is a parallel algorithm, while the Horner’s

rule and the new algorithm are both a sequential or serial

algorithms. Although the focus of this paper was

restricted to the polynomials of degree 1n , where
kn 2 for ,,, 21k the new algorithm can be used to

address the MEP with general polynomials.

VI. CONCLUSION

In this paper, we have developed a new algorithm, in

order to evaluate a univariate polynomial of degree

1n at n evaluation points or to solve a multipoint

evaluation problem (MPE) consisting of a univariate

polynomial of degree 1n together with n evaluation

points. The asymptotic time complexity of the algorithm

is)(2nO , which is the same as the that of Horner’s

method or Estrin’s method. It is concluded that the new

algorithm is more suitable for sequential implementation

than Estrin’s method. The future interest of this paper is

subject to bring down the complexity of the new

algorithm to a quasilinear time complexity, for example

).log(nnO 2

REFERENCES

Borodin, A. M., & Munro, I. H. (1975). Computational
complexity of algebraic and numeric problems.

Cooley JW. & Tukey JW (1965). “An algorithm for the
machine calculation of complex Fourier series,”
Mathematics of computation, vol. 19, 297- 301pp.

Driscoll JR , Healy Jr, DM. & Rockmore DN (1997). “Fast
discrete polynomial transform with applications to data
analysis for distance transitive graphs,” SIAM Journal on
Computing, vol.26, 1066-1099 pp.

New algo. 1510 Estrin’s meth 1510

n MRE RE 2RE MRE RE 2RE

64 239.4 0.328 0.216 7.85 0.765 0.457

128 1583 0.441 0.319 43.3 2.09 1.09

256 1670 0.995 0.488 357 3.43 2.16

512 9525 0.665 0.498 1299 7.76 4.15

1024 8501 1.77 0.923 2147 18.3 9.48

2048 49434 2.22 1.40 14319 36.3 20.3

4096 323251 3.55 1.94 80634 75.0 39.7

Proceedings of 8th International Research Conference, KDU, Published November 2015

96

Moore SS. Healy Jr DM. & Rockmore
DN.(1993).“Symmetry stabilization for fast discrete
monomial transforms and polynomial evaluation,”
Linear algebra and its applications, vol. 192, 249-299 pp.

Dorn, W. S. (1961, January). A generalization of Horner's
rule for polynomial evaluation. In Proceedings of the
1961 16th ACM national meeting (pp. 61-501). ACM

Estrin, G. (1960, May). Organization of computer
systems: the fixed plus variable structure computer. In
Papers presented at the May 3-5, 1960, western joint IRE-
AIEE-ACM computer conference (pp. 33-40). ACM.

BIOGRAPHY OF AUTHORS

WA Gunarathna is a Mathematics lecturer at the

department of Mathematics of Faculty of Engineering,

General Sir John Kotelawala Defence University,

Ratmalana, Sri Lanka. His research interests include

design of super fast algorithms for polynomial

transforms, numerical solutions of partial differential

equations, Computational Number theory and

Computational Algebra.

Nasir HM is a Visiting Consultant at Department of
Mathematics and Statistics of College of Science of
Sultan Qaboos University, Oman . He received Master of
Engineering (M.Eng) and Ph.D in computational
Mathematics, both from the University of Electro
Communications, Tokyo, JAPAN in 1999 and 2003,
respectively. His research interests include Numerical
solutions of partial differential equations, and multi
complex analysis.

