
Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

165

Annotation Based Build Process Automation for Cyber Foraging
Frameworks

P Vekneswaran 1,#, NR Dissanayake1

1Informatics Institute of technology, Colombo 6, Sri Lanka
#prathieshna@hotmail.com

Abstract— Cyber Foraging is a technique introduced to

utilize the computing resources in the vicinity to improve

the performance and the standby of the portable mobile

devices. There have been various attempts to enable Cyber

Foraging in smartphones, and they require lots of

developer effort to offload the work from the applications

in the mobile device, where the developers are required to

do lots of code modifications or additions. We introduce an

annotation based approach to automate the work

offloading in a Cyber Foraging system to a greater extent,

which requires minimal developer workload, through

flexible technique. This can be refined in the future and be

automated using machine learning algorithms, reducing

developer effort furthermore.

Keywords— Annotation, Automation, Offload, Cyber

Foraging

I. INTRODUCTION

This section gives a brief background to the cyber foraging,

specifying the problem we are focusing on and the

motivation towards the proposed annotation based

approach. Then the methodology used in the research is

specified.

A. Background

As the portable devices become smaller and smaller the

computing capabilities and the standby time of them have

become a questionable. Having a bigger battery and having

a very powerful processor is no longer an option due to the

requirement of smaller size factor. Cyber Foraging is a

technique introduced by Satyanarayanan, which can help

portable devices to take advantage of the unused

computing resources in the vicinity. This exploited

computer infrastructure is known as a Surrogate machine.

Cyber Foraging leads one step closer to M. Weiser’s vison

of ubiquitous computing, where the environment is

saturated with technology, working together towards

improving the experience of the user. Due to the higher

developer effort required to create a cyber foraging system,

or to enable cyber foraging application, the adoption of

Cyber Foraging techniques into mobile applications is low.

There are so many attempts and approaches made towards

achieving Cyber foraging, each having its own techniques,

which will be reviewed in the section II. In section III, we

will discuss the solution we propose and its limitations.

Section IV discusses the testing and evaluation of the

proposed approach, and section V concludes the paper,

also specifying the future work.

B. Methodology

Literature survey was done to analyse existing work and

gain the background knowledge. 57 preliminary researches

had been conducted in the domain of enabling Cyber

foraging (Lewis & Lago, 2015), and the survey published by

Lewis & Lago was helpful in revisiting the approaches, and

also recent approaches had been surveyed and considered

within the scope of this research.

Empirical evidence was gained based on observing and

experimenting on incorporating aspect orientation in

development phase in the direction of reducing developer

efforts, rather than going for older methods such as

developing and deploying the surrogate and mobile

components separately. Furthermore, experiments were

done in order to identify support for most types of the

commonly used method signatures and return types,

therefore to understand correct boilerplate methods to be

generated in the compilation time of the mobile application.

We worked on designing and developing the proposed

solution on top of the Intellij Idea development platform

for Mobile Application Development, which is used by

Google under the name of Android Studio. Google has

officially stopped the support for the eclipse; however, it

was made sure that supports legacy systems as well.

II. EXSISTING WORK

In this section we discuss and review the approaches used

in the existing cyber foraging work to offload the work from

mobile device to the surrogate machine, in order to

understand the gap, we intend to fill using the approach we

propose in this paper.

One of the major reasons why cyber foraging adaptation

rate is low is because of the developers’ burden on

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

166

(re)writing the code requires separate mobile and

surrogate components to be written. There are three

common ways to achieve cyber foraging. Web Server

Architecture, Mobile Agents and Virtualisation.

Web Server Client Architecture requires many services to

be written along with server components for each

application. Mobile agents approach requires mobile

optimized surrogate components to be written as it uses

mobile devices in the surrounding to offload. Virtualisation

is the easiest way to enable cyber foraging, where the

developer does not need to modify the application at all.

However, the overhead of the Virtualization approach is

comparatively high (Sharifi, et al., 2012). Some

researches/solutions we identified in our literature survey

are reviewed below, specifying the approaches they utilize,

other techniques they have incorporated, and their pros

and cons.

A. Cuckoo Development Framework

Cuckoo’s development model, which provides the following

to reduce developer effort in enabling Cyber Foraging in

applications. Developer has to create interface of the

intensive task and after Cuckoo generates the dummy stub,

developer will have to overwrite the dummies. This give

more flexibility than only having an annotation based

solution. (Roelof, et al., 2012) A very simple programming

model that is prepared for connectivity drops, supports

local and remote execution and bundles all code in a single

package. Integrating with existing development tools that

are familiar to developers. Automating large parts of the

development process. A simple way for the application user

to collect remote resources, including laptops, home

servers and other cloud resources.

B. AMCO

AMCO is an annotation based framework, which provides

conversion of java code to cyber foraging enabled

application. The programmer marks the components

suspected of being energy hotspots. In AMCO, components

can be defined at any level of program granularity, with the

smallest being individual methods and the largest a

collection of packages. To mark hotspot components,

AMCO provides a Java annotation @OffloadingCandidate;

this information can also be specified through an XML

configuration file. Based on this input, an analysis engine

first checks whether the specified component can be

offloaded as well as any of its subcomponents (i.e.

successors in the call graph). The engine also calculates the

program state, to be transferred between the remote and

local partitions that would need to be transferred to

offload the execution of both the entire component or of

any of its subcomponents. A bytecode enhancer then

generates the checkpoints that save and restore the

calculated state for the entire hotspot components as well

as for each of its subcomponents. (Kwon & Tilevich, 2013)

C. Scavenger

Just like previously described AMCO, The Scavenger

developer model is also based on. The Scavenger library

has two operating modes: manual and fully automatic. The

automated mode works by the use of Python function

decorators. Using this built-in language feature adding

cyber foraging can be as simple as adding a decorator to a

function that may benefit from remote execution.

(Kristensen & Bouvin, 2010) The limitations are the

function must be self-contained, i.e., it must not call other

functions or methods defined elsewhere in the application.

Modules used from within the function must be imported

within the function itself, so that these modules may also

be imported and used at the surrogate.

D. Analysis of Development Approaches

Even though it is easier to develop on top of frameworks

such as Scavenger and AMCO because it is just a matter of

annotating the offload candidates in the program and the

rest of the application build process is handled by the

frameworks, the developer has less freedom to improvise

the outcome of the generated code and the application.

These approaches are designed to reduce developer

burden even though the frameworks are rigid when it

comes to exceptional scenarios. Cuckoo framework

provides freedom to the programmer to handle exceptional

scenarios even though converting an app through Cuckoo is

a time consuming for developers; and it gets trickier if the

developer is not aware of the application he/she is

converting however as noted by Flinn et al., a little

application specific knowledge can go a long way when

preparing an application for distribution. However, there is

no validation for this approach to avoid using device local

hardware inputs from sensors. These approaches have

strong functional limitations when it comes to handling

states, task mitigation and migration.

III. PROPOSED APPROACH

In order to enable less developer effort in cyber foraging

enabled mobile applications development, we think that

the assistance provided by the development framework to

the developers is an important fact. In the direction of this

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

167

fact, the work offloading components – in the framework

of our ongoing research – were supposed to be designed

and developed initially, in order to identify a proper

technique to offload work with minimal developer

workload, before experimenting with other components

like decision making engine, resource monitors, or

surrogate service, to integrate them accordingly. Aspects

reduce the build process immensely, without needing to

write separate code for the surrogate components, which

will be discussed in the following section.

A. Aspect based Annotation

Candidate methods for offloading can be scattered all over

the application, thus the application has to invoke the

decision making engine every time before such method is

invoked. Knowledge of those offload method calls and log

messages is simply irrelevant to the business logic in the

class. In such scenario, The Aspect Orientation can be used

in mobile application code, to identify the compute

intensive tasks all around the application, and while using it

won’t interfere with the business logic or the object

orientated design and architecture of the application.

An aspect is a common feature, which is typically scattered

across methods, classes, object hierarchies, or even entire

object models (JBoss, 2016). Aspect has two components.

The advice is the code that will be injected to the class,

joint point is the point of interception of the class (Cejas,

2016). The boilerplate code is the section of the code that

needs to be included in many places throughout the

application, i.e. the decision making logic in cyber foraging.

Generation of boilerplate code is done by AspectJ (Java

runtime for Aspect Orientation) by interpreting the advice

and the joint points during the build process, which will

reduce the developer effort drastically.

The annotation is the key of our proposed approach, which

helps the developer to specify the identified intense tasks

in the application. In this approach, there are already

predefined advices, which need to be injected during the

compilation phase itself. Here the advice is the code that is

injected into the class file; typically, which needs to be

inserted before, after, or instead of the target method.

When the method is marked using the “offloadMethod”

annotation, AspectJ will generate the boilerplates that is

necessary for the annotated method. Refer the figure 1 for

this scenario.

In our approach, we suggest to annotate the potential

offloading candidate methods in classes, using the

“offloadMethod” using Aspect orientation. Just using one

annotation, identifying different methods with different

behaviours is not possible. Therefore, it is necessary to be

able to annotate a single method using multiple

annotations as a part of the framework we propose; so the

developer can create his custom defined aspects through

creating new annotation interfaces using default templates

provided.

Figure1. Annotation Process

B. Development Process and Limitations

When using the annotations, the developer should identify

the methods that consists of the compute intensive

components that has be considered by the decision making

engine during the runtime, weather it needs to be

offloaded or not. This requires the developer to have a

basic knowledge of the application source and the flow.

The next step the developer should make sure the

following. Identified intensive methods cannot reside inside

Android Activities. These methods should not attempt to

read hardware specific sensor data inside their scope,

which will cause errors during the runtime. Alternative is to

read the sensory data and pass it as a parameter. The

intensive components should be added to a separate java

class for it to be executed correctly in the surrogate

environment. If the source is already separated this step

can be ignored.

These candidate methods should be marked by the

developer by adding annotations. During the build time

boilerplate codes will be added by the AspectJ runtime,

which is included in the framework. There are predefined

aspects, which the developer can use, or if the developer is

looking for some distinct characteristics, he can modify the

aspects accordingly. Afterwards developer can build the

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

168

application and produce the APK, which is ready to be

installed in the mobile devices.

The surrogate service should be running at the time when

the application is about to execute the compute intensive

tasks. According to configuration, the mobile application

will find the surrogate device and attempt to connect to the

service and offload. The surrogate service will then check if

the mobile application is already in its repository of

packages. If not, it will pull the source from the mobile

device. As the components are sent automatically to the

surrogate, there is no need for the developer to manually

deploy the components explicitly. This is a onetime process,

and afterwards any mobile device running the similar

application can offload to that particular surrogate device,

without pulling the source to the surrogate. Once the

source is loaded, the surrogate will execute the task and

return the result back to the mobile device. If it is not

beneficial to offload, the mobile device will execute the

task normally without offloading to the surrogate.

IV. EVALUATION

The proposed solution will have the following advantages

over the existing development approaches.

It eliminates the need for writing two separate codes to do

the same task in the mobile and surrogate, to enable cyber

foraging in new applications. Also no need to modify the

existing source code, just need to annotate the offload

candidate methods. This will cut down the time required by

the developer to enable cyber foraging in mobile

applications. The Aspect based approach will allow the

developer to plug and play his own logic in the decision

making engine, communication protocol etc. according to

his requirements giving him/her full freedom to customize

the outcome. When building the application, the AspectJ

runtime will handle the generation of the necessary

boilerplate codes, which will further cut down the

developer cost. In comparison to the existing approaches

that is discussed in Section 2, the proposed solution in this

paper has majority of the development process automated

and easily configurable through the build scripts. This

approach will also give developers, enough customisation

options as well.

V. CONCLUSION AND FUTURE WORK

Even though cyber foraging can be easily achieved through

virtualization, there are other factors such as functional

overhead, which have adverse impact on the energy

consumption and performance. We can conclude that the

offload technique we propose is more effective in a

preliminary level, reducing the time consumption for the

development by automating most of the build process with

the help of AspectJ and Android Development Environment.

We expect to further improve the proposed approach and

introduce a framework, allowing more common features

like integration to the available IDEs, which will reduce the

developer effort furthermore, supporting rapid

development. Future of this research will extend to use

Machine Learning algorithms to identify the intense

segments of code during runtime and offload without

requiring the developer to annotate each offloading

candidates.

REFERENCES

Balan, et al., 2007. Simplifying cyber foraging for mobile devices.

s.l., ACM, pp. 272-285.

Balan, R. et al., 2002. The Case for Cyber Foraging. s.l., ACM, pp.

87-92.

Barbera, M. V., Kosta, S., Mei, A. & Stefa, J., 2013. To Offload or

Not to Offload? The Bandwidth and Energy Costs of Mobile Cloud

Computing. s.l., IEEE.

Cejas, F., 2016. Aspect Oriented Programming in Android. [Online]

Available at: http://fernandocejas.com/2014/08/03/aspect-

oriented-programming-in-android/

[Accessed 1 Apirl 2016].

Chun, B. G. et al., 2011. Clonecloud: elastic execution between

mobile device and cloud. s.l., Proceedings of the sixth conference

on Computer systems, pp. 301-314.

Cuervo, et al., 2010. MAUI: making smartphones last longer with

code offload.. s.l., Proceedings of the 8th international conference

on Mobile systems, applications, and services, pp. 49-62.

Flinn, Jason, Park, S. Y. & Satyanarayanan, M., 2002. Balancing

performance, energy, and quality in pervasive computing. s.l., IEEE,

pp. 217-226.

Flores, H. et al., 2015. Mobile code offloading: from concept to

practice and beyond. s.l., IEEE, pp. 80-88.

Flores, H. & Srirama., S., 2013. Adaptive code offloading for mobile

cloud applications: Exploiting fuzzy sets and evidence-based

learning.. s.l., Proceeding of the fourth ACM workshop on Mobile

cloud computing and services, pp. 9-16.

Gordon, M. S. et al., 2012. COMET: Code Offload by Migrating

Execution Transparently. s.l., OSDI, pp. 93-106.

Goyal, S. & John, C., 2004. A lightweight secure cyber foraging

infrastructure for resource-constrained devices. s.l., IEEE.

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

169

JBoss, 2016. Chapter 1. What Is Aspect-Oriented Programming?.

[Online]

Available at: http://docs.jboss.org/aop/1.0/aspect-

framework/userguide/en/html/what.html

[Accessed 30 March 2016].

Kosta, et al., 2012. Thinkair: Dynamic resource allocation and

parallel execution in the cloud for mobile code offloading. s.l.,

INFOCOM, 2012 Proceedings IEEE, pp. 945-953.

Kristensen, M. D., 2007. Enabling cyber foraging for mobile

devices. s.l., Proceedings of the 5th MiNEMA Workshop:

Middleware for Network Eccentric and Mobile Applications, pp.

32-36.

Kristensen, M. D., 2008. Scavenger—mobile remote execution, s.l.:

s.n.

Kristensen, M. D. & Bouvin, N. O., 2010. Scheduling and

development support in the Scavenger cyber foraging. Pervasive

and Mobile Computing, VI(6), p. 677–692.

Kwon, Y.-W. & Tilevich, E., 2013. Reducing the Energy

Consumption of Mobile Applications Behind the Scenes. s.l., IEEE.

Lewis, G. A. & Lago, P., 2015. A Catalog of Architectural Tactics for

Cyber-Foraging. s.l., ACM.

Noble, B. D. et al., 1997. Agile application-aware adaptation for

mobility. s.l., ACM, pp. 276-287.

Roelof, K., Palmer, N., Kielmann, T. & Bal, H., 2012. Cuckoo: a

computation offloading framework for smartphones. s.l., Springer

Berlin Heidelberg, pp. 59-79.

Satyanarayanan, M., 2001. Pervasive computing: Vision and

challenges.. s.l., IEEE, pp. 10-17.

Sharifi, M., Kafaie, S. & Kashefi, O., 2012. A survey and taxonomy

of cyber foraging of mobile devices. s.l., IEEE.

Su, Y.-Y. & Flinn., J., 2005. Slingshot: deploying stateful services in

wireless hotspots. s.l., ACM.

V, P. & R, D. N., 2016. Cyber Foraging: What has been missing.

Colombo, ICIIT.

Weiser, M., 1991. The computer for the 21st century. s.l., Scientific

american 265.3, pp. 94-104.

