
Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference – KDU, Sri Lanka, 2016

Performance Evaluation of Division Algorithms in FPGA

K. S. Mannatunga1, and M. D. R. Perera2

1

Department of Physics, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
2

Department of Computer Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
#
K. S. Mannatunga; < ksm@sjp.ac.lk >

Abstract— One of the main reasons that researchers

interact with the Field Programmable Gate Arrays (FPGAs)

is the parallel processing feature which can be used to make

high speed designs. However, arithmetic operations such as

division and multiplication in FPGA limit this feature

considerably. Although, hardware multipliers are included

to reduce the effect, there are no built-in hardware division

elements in any FPGA, where it is the most complicated and

expensive operation among the others. This paper presents

a comparative study of performance for several distributed

division solutions for FPGAs. Restoring, Non-restoring,

Radix-2 SRT (Sweeney, Robertson and Tocher), Radix-2 SRT

with CSA (Carry Save Adder) and the Goldschmidt’s division

algorithms were selected for the study. In addition, Xilinx’s

LogiCORE Divider Generator core v3.0 and Matlab Simulink

Divider Generator 3.0 were also evaluated. The comparison

was done by means of resource utilization (RU), delay in

critical path (DT) and area×time (RU×DT) parameter for

Xilinx Spartan-3E XC3S100E and Spartan-6 XC6LX16 devices.

The lowest logic consumption and RU×DT were seen in the

non-restoring algorithmic divider in both Spartan-3E and

Spartan-6. The lowest DT for Spartan-3E and Spartan-6

were reported by the Simulink Divider Generator 3.0, which

is 3.692 ns and the Xilinx’s LogiCORE Divider Generator core

v3.0, which is 2.626 ns respectively. However, the non-

restoring divider is identified as the best balanced division

solution by concerting the RU×DT parameter.

Keywords— FPGA, Goldschmidt, Non-restoring, Restoring,

Xilinx

I. INTRODUCTION

In the development of modem science and technology,

complexities of the application are in increased. In most

cases conventional microcontroller chips are not much

fitted to fulfill the requirement. Than the microcontrollers,

FPGAs provide more flexibility for the designer to

implement a complex algorithm with gaining more

performance. At present FPGA chips are popular in wide

range of applications such as military, environmental

monitoring(Dinesh and Saravanan, 2011; Mathurkar and

Chaudhari, 2013), wireless sensor networks(Garcia et al.,

2009; Perera et al., 2014; Portilla et al., 2007), robotic

systems(Li et al., 2003; Piltan et al., 2011a, 2011b), etc. due

to its constructive properties such as flexibility, re-

configurability, low power consumption, parallel processing,

and low latency.

In microcontrollers, mathematical operations such as

addition, subtraction, multiplication and division are

performed using the Arithmetical Logical Unit (ALU)

thought FPGAs does not offer such a unit. In FPGAs,

arithmetic operations are performed using the shift

registers, lookup tables, hardware multipliers, and logic

gates. Among the basic arithmetic operations (addition,

subtractions, multiplications and divisions) divisions is the

most complex and expensive among the four arithmetic

operations in hardware. Since there are no built-in dividers

inside the FPGA, algorithmic procedures are developed

often; hence more resources are consumed by these

algorithms. In addition to resources, division operation

requires more than one clock cycle, and thus it is slower

than the other operations. Unlike the other arithmetic

operations, accuracy of the division is lesser. Therefore, it is

advisable to use a minimal number of divisions in any FPGA

design. However, knowing advantages and disadvantages

of available dividers will be helpful for FPGA designers to

implement systems, while achieve optimum performance.

In the robotic systems researchers use FPGAs for their

implementations because FPGAs require less space and it

provides more performances while consuming low power.

In robotics, required data's are gathered through the

different sensors such as cameras, magnetometers,

gyroscopes, accelerometers, etc. and it is necessary to

design real-time operations algorithms to process data. In

those cases division operation are highly used and it is

required to implement high performance division algorithm

to achieve high throughput.

Division algorithms can be classified into two categories:

Digit-Recurrence Algorithms and Convergence Algorithms,

as shown in Fig. 1. Restoring, non- restoring(Ercegovac and

Lang, 2004; Parhami, 2009), SRT (developed by

Sweeney(Cocke and Sweeney, 1957), Robertson(Robertson,

1958) and Tocher(Tocher, 1958)), SRT with carrier save

adders(SRT with CSA) algorithms are few examples for

digit-Recurrence and most common convergence

84

Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference – KDU, Sri Lanka, 2016

algorithms are the Newton-Raphson and the Goldschmidt

algorithms(Goldschmidt, 1964).

As IP core solutions for division, Xilinx provides LogiCORE

Divider Generator cores, which can be configured to either

radix-2 non-restoring or high-radix division algorithms.

Xilinx also provides Divider Generator block for

Mathworks’s Simulink environment to work with Xilinx’s

system generator tool(Ownby and Mahmoud, 2003), which

can also be configured to either radix-2 non-restoring or

high-radix division algorithms. However, high-radix division

cannot be used with low end FPGAs. Because it does not

have XtremeDSP slices.

In this study, performance comparisons of restoring, non-

restoring, radix-2 SRT, radix-2 SRT with CSA, the

Goldschmidt division algorithms, LogiCORE Divider

Generator core v3.0 and Simulink Divider Generator 3.0 in

terms of logic utilization and critical path delay were

carried out for Xilinx FPGA devices. document is a template

and it adopts standard practices used by researchers in

both hard and soft sciences.

II. METHODOLOGY

Restoring, non-restoring, radix-2 SRT, radix-2 SRT with CSA

and the Goldschmidt division algorithms were

implemented with the VHDL hardware description

language. Since almost all of FPGA manufacturers provide

tools that support for VHDL, implemented algorithms can

be easily ported to any FPGA type without making any

changes. However, LogiCORE divider core and Simulink

divider cannot be used with FPGAs other than the Xilinx

FPGAs since they use Xilinx compiling tools, where other

vendor’s FPGAs do not support.

Design flow of restoring, non-restoring, radix-2 SRT and the

Goldschmidt algorithms are shown in Fig. 2 to Fig. 5

respectively. Only shift, add and subtract operations were

employed for developing the restoring, the non-restoring

and the SRT algorithms while the Goldschmidt method

involved multiplication also. In radix-2 SRT with CSA divider,

carrier save adders were used in addition to shift registers.

As shown in the Fig. 2, In the restoring method, a quotient

digit Q(i), which can be either 0 or 1, is decided by the Z

such a way that 1 is selected when Z is positive other vice 0.

The reason for called restoring algorithm is that this

method re-adjust the Z by adding the divisor D when Q(i) is

0. Thus after every iteration, 0≤R≤D. This added back

part in the restoring algorithm is avoided in the non-

restoring algorithm as shown in the Fig. 3. In the non-

restoring method, addition or subtraction, operation is

chosen depending on the previous iterated value of R to

calculate the new value for R. This method, after every

iteration, R is kept in the range -D≤R≤D. Restoring and

non-restoring are the most well-known digit-recurrence

algorithms in hardware implementation of division.

The SRT algorithm was originally developed to reduce the

number of additions and subtractions in division operation.

The radix-2 SRT divider was implemented according to the

procedure shown in Fig. 4. Final values of quotient and

Figure 1. The classification of division algorithms.

Figure 2. Flow chart of the restoring division algorithm

85

Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference – KDU, Sri Lanka, 2016

reminder of the SRT divider are depended on the values of

QN and QP. Radix-2 SRT with CSA is used carrier save

adders which is the only difference to the SRT methods. In

both SRT algorithms, range of R is [-D, D].

The MacLaurin series is the base of the Goldschmidt’s

algorithm of division, which consists of series

multiplications. The Goldschmidt’s divider was

implemented according to the procedure shown in Fig. 5.

For this investigation, unsigned dividers were implemented

with equal width of 8-bit for divided (N), divisor (D),

quotient (Q) and reminder (r). These dividers were tested

on Spartan-3E XC3S100E and Spartan-6 XC6LX16 FPGAs,

available in the Basys 2 and the Nexys 3 development

boards respectively, and simulated with the Xilinx ISim

simulator, which bundled with the Xilinx ISE webpack

version 14.6.

The method of the performance evaluation of the

developed dividers was based on the resource utilization by

mean of the number of flip flops (FFs), look-up tables

(LUTs), multiplexers (MUXs) and DSP slices, and the

maximum delay in the critical path.

III. RESULTS AND DISCUSSION

Table 1 and Table 2 show the logic utilization of

implemented 8-bit divider architectures in Spartan-3E and

Spartan-6 FPGA respectively.

By considering the resource, it can be seen that difference

of the restoring and the non-restoring dividers is small,

which the restoring divider consumed few more look-up

Figure 3. Flow chart of the non-restoring division algorithm.

Figure 4. Flow chart of the SRT division algorithm.

Figure 5. Flow chart of the Goldschmidt’s division algorithm.

Table 1. Resource utilization of each division architecture in
the Spartan-3E FPGA

Division Architecture

Resources

FFs LUTs MUXs

Restoring 21 31 1

Non-restoring divider 22 25 1

SRT 31 59 1

SRT with CSA 40 100 1

Goldschmidt’s algorithm 22 197 1

Xilinx Divider core 224 79 1

Matlab system generator 436 143 1

86

Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference – KDU, Sri Lanka, 2016

tables than the non-restoring, and the non-restoring divider

consumed one more flip-flops than the restoring in both

the Spartan-3E and the Spartan-6.

In the Spartan-3E, lowest resource utilization was found in

the non-restoring divider. In the Spartan-6 device, the

Goldschmidt’s algorithmic divider consumed the lowest

number of resources among other dividers. However, it

utilized two DSP slices additionally, which comprise of

multiplexers, flip-flops, adders, subtracters, multipliers, etc.

Thus, actual resources such as the number of flip-flops and

multiplexers may be different than the tabulated values in

the Table II. The second lowest resource count was found in

the non-restoring divider. Since, the Spartan-3E does not

have DSP resources, the Xilinx compiler implemented the

Goldschmidt’s divider using other hardware resources.

Table III shows the critical path delay in each division

architecture for both the Spartan-3E and the Spartan-6

FPGAs. According to the table, the lowest delay in the

critical path was found in the divider that generated by the

Matlab system generator for DSP tools for the Spartan-3E

FPGA, and in the divider that produced by the Xilinx’s

LogiCORE Divider Generator core v3.0 for the Spartan-6

FPGA. However, these two architectures consumed lots of

device resources compared to other architectures for both

device families as indicated in Table II. Resource utilization

can be improved by increasing the number of clocks per

division parameter, which will reduce the through put also.

Therefore, performances of dividers were evaluated by

ranking them according to the value of RU×DT where the

lower value provides the better performance.

The RU×DT value of each divider architecture is shown in

Figure 6. The best result in RU×DT figure is provided by the

non-restoring algorithmic divider for both the Spartan-3E

and the Spartan-6 FPGAs.

III. CONCLUSIONS

This paper, the restoring, the non-restoring, the radix-2 SRT,

the radix-2 SRT with CSA, the Goldschmidt’s algorithms, the

Xilinx’s LogiCORE Divider IP core and the Simulink Divider

Generator were compared with based on the resource

utilizations and the delays in the critical path values. All

dividers were implemented on two families of Xilinx FPGAs:

the Spartan-3E and the Spartan-6.

The results show the best balanced division solution in both

FPGA devices is the non-restoring algorithmic divider by

considering the RU×DT values. However, for optimum

speed, the divider generator of the Matlab system

generator for DSP tools and the Xilinx’s LogiCORE Divider IP

core are the most suitable divider solutions in the Spartan-

3E and the Spartan-6 FPGA devices respectively. Since

other manufacturers have different architectures than the

Xilinx has, these cores may not be ported to devices other

than the Xilinx.

Table 2. Resource utilization of each division architecture in
Spartan-6 FPGA

Division Architecture

Resources

FFs LUTs MUXs DSP Slices

Restoring 21 31 12 0

Non-restoring divider 21 25 8 0

SRT 37 38 12 0

SRT with CSA 40 84 16 0

Goldschmidt’s algorithm 21 22 0 2

Xilinx Divider core 224 152 104 0

Matlab system generator 436 296 192 0

Table 3. Delay in the Spartan-3E and Spartan-6 FPGAs

Division Architecture

Device

Spartan-3E Spartan-6

Restoring 4.992 ns 2.906 ns

Non-restoring divider 4.719 ns 3.314 ns

SRT 6.116 ns 3.258 ns

SRT with CSA 7.112 ns 5.016 ns

Goldschmidt’s algorithm 13.791 ns 7.998 ns

Xilinx Divider core 3.957 ns 2.626 ns

Matlab system generator 3.692 ns 3.150 ns

Figure 6. Product of area and time for different division
architectures.

87

Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference – KDU, Sri Lanka, 2016

References

Cocke, J., Sweeney, D.W., 1957. High speed arithmetic in a parallel

device. IBM Rep. Feb.

Dinesh, M., Saravanan, P., 2011. FPGA based real time monitoring

system for agricultural field. Int. J. Electron. Comput. Sci. Eng. 1,

1514–1519.

Ercegovac, M.D., Lang, T., 2004. Digital arithmetic. Elsevier.

Garcia, R., Gordon-Ross, A., George, A.D., 2009. Exploiting partially

reconfigurable FPGAs for situation-based reconfiguration in

wireless sensor networks, in: Field Programmable Custom

Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on.

IEEE, pp. 243–246.

Goldschmidt, R.E., 1964. Applications of division by convergence.

Massachusetts Institute of Technology.

Li, T.-H.S., Chang, S.-J., Chen, Y.-X., 2003. Implementation of

human-like driving skills by autonomous fuzzy behavior control on

an FPGA-based car-like mobile robot. Ind. Electron. IEEE Trans. On

50, 867–880.

Mathurkar, S.S., Chaudhari, D.S., 2013. A review on smart sensors

based monitoring system for agriculture. Int. J. Innov. Technol.

Explor. Eng. IJITEE 2, 76–78.

Ownby, M., Mahmoud, W.H., 2003. A design methodology for

implementing DSP with Xilinx System Generator for Matlab, in:

SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY. pp. 404–408.

Parhami, B., 2009. Computer arithmetic: algorithms and hardware

designs. Oxford University Press, Inc.

Perera, M.D.R., Meegama, R.G.N., Jayananda, M.K., 2014. FPGA

Based Single Chip Solution with 1-Wire Protocol for the Design of

Smart Sensor Nodes. J. Sens. 2014.

Piltan, F., Sulaiman, N., Jalali, A., Aslansefat, K., 2011a.

Evolutionary Design of Mathematical tunable FPGA Based MIMO

Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied

to Robot Manipulator. Int. J. Robot. Autom. 2, 317–343.

Piltan, F., Sulaiman, N., Marhaban, M.H., Nowzary, A., Tohidian,

M., 2011b. Design of FPGA-based Sliding Mode Controller for

Robot Manipulator. Int. J. Robot. Autom. IJRA 2, 173–194.

Portilla, J., Riesgo, T., De Castro, A., 2007. A reconfigurable fpga-

based architecture for modular nodes in wireless sensor networks,

in: Programmable Logic, 2007. SPL’07. 2007 3rd Southern

Conference on. IEEE, pp. 203–206.

Robertson, J.E., 1958. A new class of digital division methods.

Electron. Comput. IRE Trans. On 218–222.

Tocher, K.D., 1958. Techniques of multiplication and division for

automatic binary computers. Q. J. Mech. Appl. Math. 11, 364–384.

88

