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Abstract— One of the main reasons that researchers 

interact with the Field Programmable Gate Arrays (FPGAs) 

is the parallel processing feature which can be used to make 

high speed designs. However, arithmetic operations such as 

division and multiplication in FPGA limit this feature 

considerably. Although, hardware multipliers are included 

to reduce the effect, there are no built-in hardware division 

elements in any FPGA, where it is the most complicated and 

expensive operation among the others. This paper presents 

a comparative study of performance for several distributed 

division solutions for FPGAs. Restoring, Non-restoring, 

Radix-2 SRT (Sweeney, Robertson and Tocher), Radix-2 SRT 

with CSA (Carry Save Adder) and the Goldschmidt’s division 

algorithms were selected for the study. In addition, Xilinx’s 

LogiCORE Divider Generator core v3.0 and Matlab Simulink 

Divider Generator 3.0 were also evaluated. The comparison 

was done by means of resource utilization (RU), delay in 

critical path (DT) and area×time (RU×DT) parameter for 

Xilinx Spartan-3E XC3S100E and Spartan-6 XC6LX16 devices. 

The lowest logic consumption and RU×DT were seen in the 

non-restoring algorithmic divider in both Spartan-3E and 

Spartan-6. The lowest DT for Spartan-3E and Spartan-6 

were reported by the Simulink Divider Generator 3.0, which 

is 3.692 ns and the Xilinx’s LogiCORE Divider Generator core 

v3.0, which is 2.626 ns respectively. However, the non-

restoring divider is identified as the best balanced division 

solution by concerting the RU×DT parameter.  

 

Keywords— FPGA, Goldschmidt, Non-restoring, Restoring, 
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I. INTRODUCTION 

In the development of modem science and technology, 

complexities of the application are in increased. In most 

cases conventional microcontroller chips are not much 

fitted to fulfill the requirement.  Than the microcontrollers, 

FPGAs provide more flexibility for the designer to 

implement a complex algorithm with gaining more 

performance. At present FPGA chips are popular in wide 

range of applications such as military, environmental 

monitoring(Dinesh and Saravanan, 2011; Mathurkar and 

Chaudhari, 2013), wireless sensor networks(Garcia et al., 

2009; Perera et al., 2014; Portilla et al., 2007), robotic 

systems(Li et al., 2003; Piltan et al., 2011a, 2011b), etc. due 

to its constructive properties such as flexibility, re-

configurability, low power consumption, parallel processing, 

and low latency. 

In microcontrollers, mathematical operations such as 

addition, subtraction, multiplication and division are 

performed using the Arithmetical Logical Unit (ALU) 

thought FPGAs does not offer such a unit. In FPGAs, 

arithmetic operations are performed using the shift 

registers, lookup tables, hardware multipliers, and logic 

gates. Among the basic arithmetic operations (addition, 

subtractions, multiplications and divisions) divisions is the 

most complex and expensive among the four arithmetic 

operations in hardware. Since there are no built-in dividers 

inside the FPGA, algorithmic procedures are developed 

often; hence more resources are consumed by these 

algorithms. In addition to resources, division operation 

requires more than one clock cycle, and thus it is slower 

than the other operations. Unlike the other arithmetic 

operations, accuracy of the division is lesser. Therefore, it is 

advisable to use a minimal number of divisions in any FPGA 

design. However, knowing advantages and disadvantages 

of available dividers will be helpful for FPGA designers to 

implement systems, while achieve optimum performance. 

 

In the robotic systems researchers use FPGAs for their 

implementations because FPGAs require less space and it 

provides more performances while consuming low power. 

In robotics, required data's are gathered through the 

different sensors such as cameras, magnetometers, 

gyroscopes, accelerometers, etc. and it is necessary to 

design real-time operations algorithms to process data. In 

those cases division operation are highly used and it is 

required to implement high performance division algorithm 

to achieve high throughput. 

 

Division algorithms can be classified into two categories: 

Digit-Recurrence Algorithms and Convergence Algorithms, 

as shown in Fig. 1. Restoring, non- restoring(Ercegovac and 

Lang, 2004; Parhami, 2009), SRT (developed by 

Sweeney(Cocke and Sweeney, 1957), Robertson(Robertson, 

1958) and Tocher(Tocher, 1958)), SRT with carrier save 

adders(SRT with CSA) algorithms are few examples for 

digit-Recurrence and most common convergence 

84 



Proceedings in Medical, Allied Health, Basic and Applied Sciences,  9th International Research Conference – KDU, Sri Lanka, 2016 

algorithms are the Newton-Raphson and the Goldschmidt 

algorithms(Goldschmidt, 1964).  

 

As IP core solutions for division, Xilinx provides LogiCORE 

Divider Generator cores, which can be configured to either 

radix-2 non-restoring or high-radix division algorithms. 

Xilinx also provides Divider Generator block for 

Mathworks’s Simulink environment to work with Xilinx’s 

system generator tool(Ownby and Mahmoud, 2003), which 

can also be configured to either radix-2 non-restoring or 

high-radix division algorithms. However, high-radix division 

cannot be used with low end FPGAs. Because it does not 

have XtremeDSP slices. 

 

In this study, performance comparisons of restoring, non-

restoring, radix-2 SRT, radix-2 SRT with CSA, the 

Goldschmidt division algorithms, LogiCORE Divider 

Generator core v3.0 and Simulink Divider Generator 3.0 in 

terms of logic utilization and critical path delay were 

carried out for Xilinx FPGA devices. document is a template 

and it adopts standard practices used by researchers in 

both hard and soft sciences. 

 
II. METHODOLOGY 

Restoring, non-restoring, radix-2 SRT, radix-2 SRT with CSA 

and the Goldschmidt division algorithms were 

implemented with the VHDL hardware description 

language. Since almost all of FPGA manufacturers provide 

tools that support for VHDL, implemented algorithms can 

be easily ported to any FPGA type without making any 

changes. However, LogiCORE divider core and Simulink 

divider cannot be used with FPGAs other than the Xilinx 

FPGAs since they use Xilinx compiling tools, where other 

vendor’s FPGAs do not support. 

 

Design flow of restoring, non-restoring, radix-2 SRT and the 

Goldschmidt algorithms are shown in Fig. 2 to Fig. 5 

respectively. Only shift, add and subtract operations were 

employed for developing the restoring, the non-restoring 

and the SRT algorithms while the Goldschmidt method 

involved multiplication also. In radix-2 SRT with CSA divider, 

carrier save adders were used in addition to shift registers. 

  

As shown in the Fig. 2, In the restoring method, a quotient 

digit Q(i), which can be either 0 or 1, is decided by the Z 

such a way that 1 is selected when Z is positive other vice 0. 

The reason for called restoring algorithm is that this 

method re-adjust the Z by adding the divisor D when Q(i) is 

0. Thus after every iteration, 0≤R≤D. This added back 

part in the restoring algorithm is avoided in the non-

restoring algorithm as shown in the Fig. 3. In the non-

restoring method, addition or subtraction, operation is 

chosen depending on the previous iterated value of R to 

calculate the new value for R. This method, after every 

iteration, R is kept in the range -D≤R≤D. Restoring and 

non-restoring are the most well-known digit-recurrence 

algorithms in hardware implementation of division. 

 

The SRT algorithm was originally developed to reduce the 

number of additions and subtractions in division operation. 

The radix-2 SRT divider was implemented according to the 

procedure shown in Fig. 4. Final values of quotient and 

 
 

Figure 1.  The classification of division algorithms. 
  

 
 

Figure 2.  Flow chart of the restoring division algorithm 
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reminder of the SRT divider are depended on the values of 

QN and QP. Radix-2 SRT with CSA is used carrier save 

adders which is the only difference to the SRT methods. In 

both SRT algorithms, range of R is [-D, D]. 

 

The MacLaurin series is the base of the Goldschmidt’s 

algorithm of division, which consists of series 

multiplications. The Goldschmidt’s divider was 

implemented according to the procedure shown in Fig. 5. 

  

For this investigation, unsigned dividers were implemented 

with equal width of 8-bit for divided (N), divisor (D), 

quotient (Q) and reminder (r). These dividers were tested 

on Spartan-3E XC3S100E and Spartan-6 XC6LX16 FPGAs, 

available in the Basys 2 and the Nexys 3 development 

boards respectively, and simulated with the Xilinx ISim 

simulator, which bundled with the Xilinx ISE webpack 

version 14.6.  

 

The method of the performance evaluation of the 

developed dividers was based on the resource utilization by 

mean of the number of flip flops (FFs), look-up tables 

(LUTs), multiplexers (MUXs) and DSP slices, and the 

maximum delay in the critical path. 

 

III. RESULTS AND DISCUSSION 

Table 1 and Table 2 show the logic utilization of 

implemented 8-bit divider architectures in Spartan-3E and 

Spartan-6 FPGA respectively. 

 

By considering the resource, it can be seen that difference 

of the restoring and the non-restoring dividers is small, 

which the restoring divider consumed few more look-up 

 
 

Figure 3.  Flow chart of the non-restoring division algorithm. 

 
 

Figure 4.  Flow chart of the SRT division algorithm. 
  

 
 

Figure 5.  Flow chart of the Goldschmidt’s division algorithm. 
  

Table 1. Resource utilization of each division architecture in 
the Spartan-3E FPGA 

 

Division Architecture 

Resources 

FFs LUTs MUXs 

Restoring 21 31 1 

Non-restoring divider 22 25 1 

SRT 31 59 1 

SRT with CSA 40 100 1 

Goldschmidt’s algorithm  22 197 1 

Xilinx Divider core 224 79 1 

Matlab system generator  436 143 1 
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tables than the non-restoring, and the non-restoring divider 

consumed one more flip-flops than the restoring in both 

the Spartan-3E and the Spartan-6. 

 

In the Spartan-3E, lowest resource utilization was found in 

the non-restoring divider. In the Spartan-6 device, the 

Goldschmidt’s algorithmic divider consumed the lowest 

number of resources among other dividers. However, it 

utilized two DSP slices additionally, which comprise of 

multiplexers, flip-flops, adders, subtracters, multipliers, etc. 

Thus, actual resources such as the number of flip-flops and 

multiplexers may be different than the tabulated values in 

the Table II. The second lowest resource count was found in 

the non-restoring divider. Since, the Spartan-3E does not 

have DSP resources, the Xilinx compiler implemented the 

Goldschmidt’s divider using other hardware resources. 

 

Table III shows the critical path delay in each division 

architecture for both the Spartan-3E and the Spartan-6 

FPGAs. According to the table, the lowest delay in the 

critical path was found in the divider that generated by the 

Matlab system generator for DSP tools for the Spartan-3E 

FPGA, and in the divider that produced by the Xilinx’s 

LogiCORE Divider Generator core v3.0 for the Spartan-6 

FPGA. However, these two architectures consumed lots of 

device resources compared to other architectures for both 

device families as indicated in Table II. Resource utilization 

can be improved by increasing the number of clocks per 

division parameter, which will reduce the through put also. 

Therefore, performances of dividers were evaluated by 

ranking them according to the value of RU×DT where the 

lower value provides the better performance. 

 

The RU×DT value of each divider architecture is shown in 

Figure 6. The best result in RU×DT figure is provided by the 

non-restoring algorithmic divider for both the Spartan-3E 

and the Spartan-6 FPGAs. 

 

III. CONCLUSIONS 

This paper, the restoring, the non-restoring, the radix-2 SRT, 

the radix-2 SRT with CSA, the Goldschmidt’s algorithms, the 

Xilinx’s LogiCORE Divider IP core and the Simulink Divider 

Generator were compared with based on the resource 

utilizations and the delays in the critical path values. All 

dividers were implemented on two families of Xilinx FPGAs: 

the Spartan-3E and the Spartan-6. 

 

The results show the best balanced division solution in both 

FPGA devices is the non-restoring algorithmic divider by 

considering the RU×DT values. However, for optimum 

speed, the divider generator of the Matlab system 

generator for DSP tools and the Xilinx’s LogiCORE Divider IP 

core are the most suitable divider solutions in the Spartan-

3E and the Spartan-6 FPGA devices respectively. Since 

other manufacturers have different architectures than the 

Xilinx has, these cores may not be ported to devices other 

than the Xilinx. 

 

 

 

 

Table 2. Resource utilization of each division architecture in 
Spartan-6 FPGA 

 

Division Architecture 

Resources 

FFs LUTs MUXs DSP Slices 

Restoring 21 31 12 0 

Non-restoring divider 21 25 8 0 

SRT 37 38 12 0 

SRT with CSA 40 84 16 0 

Goldschmidt’s algorithm  21 22 0 2 

Xilinx Divider core 224 152 104 0 

Matlab system generator  436 296 192 0 

 

 

Table 3. Delay in the Spartan-3E and Spartan-6 FPGAs 
 

Division Architecture 

Device 

Spartan-3E Spartan-6 

Restoring 4.992 ns 2.906 ns 

Non-restoring divider 4.719 ns 3.314 ns 

SRT 6.116 ns 3.258 ns 

SRT with CSA 7.112 ns 5.016 ns 

Goldschmidt’s algorithm  13.791 ns 7.998 ns 

Xilinx Divider core 3.957 ns 2.626 ns 

Matlab system generator  3.692 ns 3.150 ns 

 

 

 
 

Figure 6.  Product of area and time for different division 
architectures. 
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