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Abstract—The notion of a discrete transform is of great
importance in solving many problems in Science and
Engineering. For instance, the ordinary discrete Fourier
transform (DFT) is one of the most important and
distinguished elements in the class of discrete transform
which is extensively used in Digital Signal and Image
processing. In this paper, we ourselves define a novel
discrete transform. To define this, let {,BO, Bise-os ﬂN—l}

be a given sequence of N complex numbers. For a given
positive integer p and a complex parameter o, we
define our transform by the sequence
a={ag(p),a1(p)s....ay1(p)}
where
N-1

a,(p)= Y B;(c+w )P
J=0

forall k=0,1,..,N—1and w=e">""isan N" root of
unity.

We show that this transform holds the properties of the
linearity and periodicity. The naive computation of this

new transform requires a complexity of O(pN %) which is
computationally prohibitive for large values of N and p.
For relatively small values of p, We further develop a fast
algorithm with the complexity of O(NlogN).The naive

and fast algorithms are both implemented in MATLAB
and we explore the performance of the fast algorithm by
means of numerical examples.

Keywords— Discrete Fourier Transform, Fast Fourier
Transform, Novel Discrete Transform.

I.INTRODUCTION

Discrete transforms are widely used in many Science and
Engineering applications, including Physics, Medical
imaging, global weather forecasting, and Statistical
analysis. For instance, one of the most important and
distinguished elements in the class of discrete transforms
is the ordinary discrete Fourier transform (DFT), where
Signal and |Image processing abound with many
significant computations carried out by the DFT.

Let {ﬂo,ﬂl,...,ﬂN_l} be a sequence of N complex

numbers. Then, its N -point DFT is defined by the
sequence of N complex numbers {ao,al,...,aN_l },

where
N-1
ik
= Zﬂjw'/
=0
for k=0,1,...,N—1,where w=e"2"is an N" root
of unity.

The naive computation of the DFT is prohibitive in terms
of number of operations and computer times for large
values of N. The fast Fourier transform (FFT),
demonstrates outstanding performance in the digital
computer, is a fast and robust algorithm for the DFT
which was invented by Cooly and Tukey in 1965 and
published in Cooley JW. & Tukey JW (1965). The FFT is so
fast that it requires 3N/2log N arithmetic operations,

opposed to O(NZ) arithmetic operations arising from
the naive computation of the DFT. The discrete sine
transform, discrete cosine transform, discrete polynomial
transform, and spherical harmonic transform are also
some other leading examples for discrete transforms,
each of which has fast algorithms with reasonable
computational complexities. For further details the
reader is referred to Driscoll JR, Healy Jr, DM. &
Rockmore DN (1997), Chen, W.H., Smith, C.H. and Fralick,
S.C.(1977) and the references therein.

In this paper, we ourselves present a novel discrete
transform. Let N be a given positive integer, and let
{ﬂo,ﬂl,...,ﬁ,\,_l} be a given sequence of N complex
numbers.

For a given positive integer p and a complex parameter
o, we define our transform by the sequence

a ={ay(p),ar(p)s-ray (D))
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where
N-1

a,(p)= Zﬂj (o +w/*)? (1)
Jj=0

forall k=0,1,...,N-1.

It is not difficult to see that this transform with =0
and p =1 yields the DFT and that the naive computation
of the transform requires O(pNz) arithmetic operations
which is prohibitive for large values of N and p. We
further develop a fast algorithm to compute the novel
transform with computational complexity of O(NlogN)
for relatively small values of p, with respect to N. In
this paper, the novel transform of the sequence
{Bo>P1se.» By} will be denoted by NDT(S) when
needed. Also, the novel transform governs the properties
of linearity and periodicity. To put it another way, let
B=1{Bo>P1>-sByats ¥ =10sV1s-sV N} be two

sequences of complex numbers each containing N terms.

Suppose further that a and b are two constants. Then,

1) Linearity:
NDT (a3 +by) = aNDT () + bNDT (y)
That is, the NDT is a linear operator.

2) Periodicity:
Ay () =a,(p)
forall k=0,1,...,N—1.
The proof of the above two properties is obvious and
thus we leave it.

The organization of this paper is set to have the following
structure: In Section I, we present the development of a
fast algorithm for the NDT. Section 1l describes the
implementation of our algorithm. Section IV is devoted to
present the numerical results. Section V makes
comments on the numerical results. Finally, we give
conclusions in Section VI.

II. DEVELOPMENT OF A FAST ALGORITHM FOR NDT
Since the great descriptions of the DFT and FFT are
abundantly and frequently available in the literature, we
ignore the description of those transforms, but we
summarize both in the following theorem.

A. Theorem 1
Let {ﬁo,ﬂl,...,ﬂN_l} be a sequence of N complex
numbers. Then, the sequence of complex numbers

{ao,al,...,aN_l } defined by
N-1

ik
ak = ZIB]W]

Jj=0
forall k=0,1,....N—1,
can be computed in O(NlogN) operations.

The poof of Theorem 1 can be found in Cooley JW &
Tukey JW (1965).

B. Proposition 1
Let {ﬂo,ﬂl,...,ﬂN_l} be a sequence of N complex
numbers, and let p be a positive integer such that
N is divisible by p. Then the sequence of complex
numbers {ao,al,...,aN_l}, defined by

N-1
_ Jjkp
X = Zﬁ.fw
j=0

forall k=0,1,2,...,.N -1,
can be computed in O(N logN) in operations.

Proof:

N-1 N-1
_ jkp _ ~i27kp/ N
A = Zﬂjw = Zﬁ/e
Jj=0 j=0

N-1 .
—i2mk/N
=2 B,
J
J=0

where NP=E.

p
It can be easily seen that

—i27k(j+mN ,)/N,, —-i27k/N,,
e =e
for all
j=0,1,...,N-1,

where m is a non-negative integer.
Now,

N-1 p-1N,-1

-27k/N, _ —i27k/N,,
2B =2 2 B, €
Jj=0 m=0 j=0

forall k=0,1,...,N-1.

We can further note that for each non-negative integer
q=0,1,....,p—1,
p-1N,-1

_ —i275(k+qN,)/N,
ak+qu - Z Z ﬂj+mNpe
m=0 j=0

p-1N,-1

_ Z Z ﬁ-+ N e—iZ/y'k/Np
Jj+mN,

m=0 j=0

Hence, this implies that
Xpign, = g
forall k=0,1,...,.N,-1, m=0,1,..,p-1,and
q=0,1,...,p—1.
The inner sum of the above double sum vyields an Np
point DFT for each m =0,1,..., p —1, each of which
can be computed in 3Np/210ng operations, using

Theorem 1.
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Thus, the total number of operations needed to compute
allsuch N, point DFT’s amounts to

3N
( P longJpzﬂlog(ﬁ}
2 2 p

To operate the outer sum of the double sum, it is
required to have N(p—1)/p additions and thus the

total number of operations needed to operate the whole
double sum equals

T, =ﬂ10g[ﬁj+ﬁ(p_1).
2 p) p

This means that to compute «, forall k=0,1,...,N -1,

there must be at least 7, operations which is
asymptotically equal to O(NlogN)and thus we conclude

the proof of Proposition 1.

C. Theorem 2
Let {ﬁo,ﬂl,...,ﬁN_l} be a sequence of N complex
numbers. Suppose that N is divisible by 2.
Then the sequence of N complex numbers:
{ao 2),0,(2),....,an_4 (2)}, defined by the transform
N-1

2, 2)=Y B (o +w)?
j=0

forall £=0,1,...,N -1, where o isacomplex
parameter, can be computed in O(N log N)
arithmetic operations.

Proof:
N-1

2, ()= B;(c+w)
j=0

N-1 N-1 N-1

_ 2 Jk Z 2jk

=0 Z,Bj+20-2ﬂjw +) Bw
j=0 j=0 /=0

From Theorem 1 and Proposition 1, we can determine
that the number of operations needed to compute the
first, the second, and the third expressions are
respectively:

N+1, 3N/2logN+N +1,and 3N/2log(N/2)+ N/2.
Thus the total number of operations taken to compute
the entire transforms amounts to

3NlogN + 2N—%log2 +2,

which establishes that the asymptotic complexity of the
new transform with p =2 is O(NlogN).

D. Theorem 3
Let N be a positive integer such that NV is divisible
by 2 and 3. Let {f,./,..... By_1 | be a sequence of
N complex numbers.
Then the sequence of N complex numbers:
{ao 3),a,(3),...,an4 (3)}, defined by the transform

N-1

2,(3) =Y B;(c+w')?

j=0

forall k=0,1,...,N—1, where o is acomplex
parameter, can be computed in O(NlogN)
arithmetic operations.

Proof:
N-1
k3
2, (3)= ) B;(c+w")
j=0
N-1 N-1 N-1
=3 Zﬁj +30? Zﬂjwjk +3O'Zﬁjw21k
Jj=0 Jj=0 Jj=0
N-1
3k
+ Z,ij /
/=0

Proposition 2 can be used to compute the number of
operations needed for each of the last three finite sums
in the above expression. Then It can be shown that the
total number of operations that we want to accomplish
the o, (3)forall £=0,...,N amounts to

%logN—ﬂlog6+M+3.
2 2 6

Now,

%logN—%log6+ﬂ+3

< %logN+%logN+%logN

85
= leogN whenever N >6.
Thus this concludes the proof of Theorem 3.

E. Theorem 4

Let N be a given positive integer, and let p(>1)bea
positive integer such that V is divisible by each of
2,3,...,p-1

Let {ﬂo,ﬂl,...,ﬁN_l} be a sequence of N complex
numbers.

Then the sequence of N complex numbers:

{ao (p),a1(p)s...,0 N4 (p)}, defined by the transform
N-1

@, (p)= Y B;(a+w)

j=0

forall k=0,1,...,N—1, where o isacomplex
parameter, can be computed in O(N log N)
arithmetic operations.

Proof:
Now let us consider the case p > 2.
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N-1

a,(p)= ) B (c+w")?

r=0 Jj=0
N-1 P p N-1
—r kr
ROV (VAT
j=0 =\ Jj=

To accomplish the first sum together with term o, we
want N + p —1operations.

Then, from Proposition 2, for a fixed (> 0) , the number
N-1

of operations taken to compute Zﬂjw-"k” is
Jj=0

Wi X)Xy
2 r

B
while the number of operations taken to compute the

term (p]o_p_, is 2p—r+1 for r>0. Further, we want
r

additional Np operations to add all the individual sums
together forall k=01,....N-1.

Thus the total number of operations needed to compute
the new transform is

i(%log[zv)+ﬁ(r—l)+2p—r+1}
r

r=1 r
+N+p-1+Np

3N 21
= T(plogN—logp!)— N;(;]

+(;p2 +§p+2Np+N—1)

Hence,
»
N N) N
z 3—log(—)+ (r-D)+2p-r+2|+N+p-1
o\ 2 r r
<%logN+¥logN+leogN+¥logN
—15leogN

whenever N >max(p +1, p!).
For relatively small values of p with respectto N,
the computational complexity of the transform
is O(NlogN).
[1l. IMPLEMENTATION

This section concentrates on the implementation of
Theorem 2, Theorem 3 and Theorem 4 described in
Section IlI.

Algorithm 1: Theorem 2

INPUT: o, w,8={B. B+ By}
oupuT: NDT(f):{a,(2),a,(2),....ay,(2)}
STAGES:
1. Compute c =062 (By+ By +...+ By1)
Set C=[co,c1,...,cN_1]T,

where ¢; =¢ forall /=0,1,...,N-1.

2. Llet:
711 =[ﬂ0,,31,.--,,3N_1]T
Tn =[ﬁo’ﬂ1w-sﬂN/2—1]T

T
T =[Bni2s Byiasase-s Pyl

Compute:
a) Dy, =20FFT(ry;)

b) D, =FFT(ry)
c) D, =FFT(ry)
3. Compute:

NDT(B)=C+D,, +[

D D.
11:'+|: 22:‘
Dll DZZ
Algorithm 2: Theorem 3

INPUT: o, w, B=1{Lo,B1»r- s By1}
OUPUT: NDT(B): {ay(3),a1(3),.r a1 (3)}
STAGES:
1. Compute ¢ = 0'3(/)’0 +PB+.+ By)
Set C=[cgsCpaeanCy gl s

where ¢; =¢ forall [=0,1,...,N-1.

2. Let:
711 =[:80’ﬂ1""’ﬂN—1]T
0 = BosBrseos Byiaal'
2 :[ﬂN/ZHBN/ZH"“’ﬁN—l]T
731 =[ﬂo,,31,--~,ﬂN/3_1]T
732 :[ﬂN/39ﬂ1V/3+19""ﬂZN/3—1]T

T
733 =[BanszsPanszers-- s Byl

Compute:
a) D, =36°FFT(x,;)
b) D,y =30FFT(7y)
c) Dy, =30FFT ()
d) Ds; = FFT(73)

132



Proceedings in (Engineering, Built Environment and Spatial Sciences), 9th International Research

2016
Conference-KDU, Sri Lanka

e) D, =FFT(73,)
f)  Diy = FFT(733)

3. Compute:
NDT(f)=C+Dy, + [DHJ + [DZZ}
DZl DZZ
Dy | | Dy | | Dy
+| D3y |+| D3y +| Dy
Dy | | Dsp Ds;

Algorithm 3: Theorem 4

INPUT: o,w,p, ﬂ: {ﬂoaﬂlsnwﬁN—l}
OUPUT: NDT(S) : {ato(p), a1 (P)s-s 1 (P)}
STAGES:

1. Compute c=c’(By+ By +...+ By_1)
Set C=[co,cl,...,cN_1]T,

where ¢; =¢ forall /=0,1,...,N-1.

2. Let:
T
711 =[BosBrse-s Byl

T
Tmn = [,BN(m—l)/p 9ﬂN(m—1)/p+1" . ‘9ﬁmN/p—1]
forall m=1,2,...,p and for n=1to m

Compute:
_|Pl|yrt
a) D, = 1 ol " FFT(my)

b) for m=2todo p

for n =1todo m

D, = (p ]o-p_mFFT(ﬂmn )
m

T
D”':I’l =[Dmn’Dnm""’Dmn]
(This includes m components)
end
end
3. Compute:

for m=2todo p

NDT(B)=C+Dy, +Y_.Dp,
n=1
end

IV. NUMERICAL RESULTS
This section shows numerical results of numerical
experiments, carried out to illustrate the performance of
the novel algorithm. We present numerical tests for

p=2 and p=3.In each case, the sequence [ was

randomly chosen from the interval (0, 1) by operating
MATLAB rand() function for various values of N, and
further the fft() function in MATLAB was used to
efficiently compute all the DFT’s involved in the fast
algorithm. All the computations were performed on a
personal computer with Intel(R) Pentium 2.1 GHz
processor, with 2.00 GB RAM, 64 bit windows 7 operating
system using MATLAB version 12 codes. The efficiency of
the fast transform is tested by means of CPU times in
seconds (sec.). The accuracy of the algorithm is tested
with respect to relative errors (RE). The relative error of
the output sequence « is computed with respect to the
maximum relative error (MRE) and the infinity norm
defined by (2) and (3) , respectively. In the error formulae,

v and v stand for the result computed by the new fast
transform and the corresponding result computed by the
naive algorithm, respectively.

*
V; —V;
MRE = max ——— (2)
i=0,1,...,n—1 ‘v- ‘
1
*
max (v, —v;
_ 0<isn—1
RE, = - (3)
max [v;
0<i<n-1

Table 1: Relative error when p=2 and o =10

N MRE REOO
128 8.323e-15 7.547e-15
256 1.463e-14 1.326e-14
512 2.136e-13 1.949e-13
1024 4.140e-13 3.756e-13
2048 2.899e-12 2.629e-12
4096 9.465e-12 8.577e-12
8192 1.910e-11 1.734e-11
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Table 2: Relative error when p =3 and o =10

N MRE RE,,

1566 4.998e-12 3.748¢e-12
1686 6.041e-12 4.569¢-12
1806 8.446e-12 6.373e-12
2106 1.363e-11 1.024e-11
2706 2.790e-11 2..096e-11
3006 1.888e-11 1.423e-11
3606 3.070e-13 2.301e-13
4206 6.053e-11 4.562e-11
4806 3.306e-11 2.484e-11
5406 1.884e-11 1.420e-11
6006 5.377e-11 4.035e-11
6606 1.072e-10 4.035e-11
7206 7.514e-12 5.648e-12
7806 1.402e-10 1.054e-10
8406 1.996e-10 1.497e-10
9006 8.242e-12 6.182e-12
10206 7.063e-11 5.306e-11
10806 2.963e-11 2.229e-11

Table 3: CPU times elapsed for the fast algorithm when p =3 o =10 ,and N > 12006

N 12006 15006 18006 21006 24006 30006 36006 48006
CPU times 0.312 0.359 0.515 0.702 0.889 1.357 1.966 3.494
N 48006 60006 72006 90006 120006 150006 180006 240006
CPU times 3.494 5.351 7.691 12.870 22.511 35.319 52.058 98.031
N 300006 600006 1200006
CPU times 158.653 654.019 2564.000
!
5 100- ’."‘ 5200- ‘Q
g .’.O‘ B 150l “““.‘ *
g ."‘Q 100 ““.“n
g o st e
g s "0 T |
\d L 2000 4000 90?00 8000 10000 12000
“l“‘ Length of input sequence N
. e Figure 2: Comparison of CPU times between the

(] 1000 2000 3000 4000 5000 5000 7000 8000 3000
Length of input sequence N

Figure 1: Comparison of CPU times between the
NAIVE AND FAST ALGORITHMS WHEN p =2, o =10

naive and fast algorithms when p =3,0 =10

V. DISCUSSION

Figure 1 demonstrates the comparison of CPU times
for the naive and fast algorithms for different values of
N when p=2and 0=10. In this case p=2, the
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values being chosen for N must be divisible by 2(see
Theorem 2). In this example, we have chosen the
values 2, 4, 8, ..., 4096, 8192 for N. It can be seen from

Figure 1 that CPU times elapsed for the fast algorithm
is comparatively very smaller than those for the naive
algorithm. At N =128, CPU times for both algorithms
are almost the same (0.000 seconds), whereas at N =
8192, the CPU time for the naive algorithm is nearly
150 seconds and so is for the fast algorithm is 0.000
seconds. Figure 2 illustrates the comparison of CPU
times for both algorithms in the case where p =3 and
o =10.As this illustration includes p=3, the values
being chosen for N must be divisible by both 2 and
3(see Theorem 3). In this case, the values chosen for
N are 1566, 1686, 1806, 2106, 2706, 3006, 3606,
4206, 4806, 5406, 6006, 7206, 7806, 8406, 9006,
10206, 10806, 11406(the values of N in which
N < 1566are ignored since the CPU times for the fast
algorithm are 0.000). Figure 2 also exhibits a
relationship between CPU times elapsed for the fast
algorithm and the CPU times elapsed for the naive
algorithm which is similar to that in Figure 1(At N
=11406, the CPU time for the naive algorithm is nearly
450 seconds whereas that for the fast algorithm is
0,000). On the other hand, the computer memory
capacity is inadequate for the naive algorithm to be
implemented when N >12006. The CPU times elapsed
for the fast algorithm when N >12006 are included in
Table 3. It displays that when N =12006, the CPU time
is 0.312 seconds, while when N =1200006, the CPU
time is 2564 seconds. Table 1 and Table 2 shows the

relative errors, namely MRE and RE_, computed at
various values of N.These errors confirm that the fast
algorithm permits high accuracy to be attained. In
Table 1 MRE=8.323e-15 and RE, =7.547e-15 when
N =128 while MRE=1.910e-11 and RE_, =1.734e-11

when N =8192. Besides that in Table 1, MRE=4.998e-
12 and RE,, =3.748e-12 when N =1566 and, MRE =

2.383e-10 and RE, =1.791e-10 when N =11406.

VI. CONCLUSION
In this paper, we defined a novel discrete transform
and developed a fast algorithm for it. For relatively
small values of p, the computational cost of the fast
algorithm is O(NlogN).The theoretical results for
p =23 were also numerically confirmed. It is also
possible to verify the theoretical results for p>3. All
the numerical computations were performed in
MATLAB. We have further shown that the novel
transform holds the properties of linearity and
periodicity. However, the existence of the inversion of
the transform is yet to be determined. The inversion,

some useful active applications of the transform and
the fractional form of the transform would be the
subject of the further work.
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