
Proceedings of 8th International Research Conference, KDU, Published November 2015

54

A Comparative Analysis of Various String Matching Algorithms

DU Vidanagama

Department of Information Technology, Faculty of Computing, General Sir John Kotelawala Defence University,
Ratmalana, Sri Lanka

dush85@gmail.com

Abstract— String-matching is a very important subject in
the wider domain of text processing. It is used in almost
all the software applications starting from text editors to
the complex Network Intrusion Detection Systems (NIDS)
which uses signature matching based on string matching.
There are different string matching algorithms for solving
the string matching problem. Such algorithms can greatly
reduce the response time of the software applications
which uses the string matching. The research problem of
this research is to analyse the efficiency of different string
matching algorithms. The objective of this research is to
evaluate the execution time of the string matching
algorithms and compare the efficiency of the algorithms.
This study focuses on four selected string matching
algorithms which are Naïve algorithm, Brute-Force
algorithm, Boyer-Moore algorithm and Knuth-Morris-
Pratt algorithm. The algorithms are tested against
matching patterns with different lengths and the
placement of the pattern (suffix, prefix or middle). The
algorithms are written in Java Language and the
execution time is measured in nanoseconds. The
matching efficiencies of these algorithms are compared
by the searching speed. It is observed that the
performance of the Brute-Force algorithm and Naive
algorithm is comparatively high. When considering the
pattern placement, Brute-Force and Knuth-Morris-Pratt
algorithms are faster when the pattern is in the prefix
than suffix. Naive algorithm has no comparative
difference of performance on the pattern placement.

Keywords— String Matching Algorithms, Pattern
Length, Pattern Placement

I. INTRODUCTION
String matching is a technique used to find the pattern
within a given string. It is used in almost all the software
applications starting from text editors to the complex
Network Intrusion Detection Systems (NIDS) which uses
signature matching based on string matching. String
matching algorithms are used to find the matches
between the pattern and the specified string. The pattern
is denoted by P [1....m]. The text is denoted by T [1...n]
where m<=n. If P occurs with shift s in T, then s is a valid
shift; otherwise, s is an invalid shift.

Figure 1.Overview of String Matching

The string matching problem is the problem of finding all
valid shifts with which a given pattern P occurs in a given
text T (Kumar et al., 2011). Fig. 1 shows this definition.

The string-matching algorithms can be broadly classified
into two main categories. Those are Exact String-
Matching algorithms and Approximate String-Matching
algorithms (Rasool et al., 2012). The objective of this
research is to compare the execution time of the string
matching algorithms based on the pattern length and the
pattern placement within the text. The author considers
the problem of selecting the best performed string
matching algorithms based on the pattern length and the
pattern placement. This paper compares four different
exact string matching algorithms based on their
execution time. The algorithms that are covered by this
paper are: Boyer-Moore Horspool Algorithm, Knuth-
Morris-Pratt Algorithm, Brute-Force algorithm and Karp
Rabin Algorithm.

II. LITERATURE REVIEW

A. Exact String matching algorithms

1) Brute-Force Algorithm (BF):
The BF Algorithm compares the pattern in the text
starting from left to right, one character at a time, until a
mismatch is found. This algorithm has no pre-processing
phase. The algorithm can be designed to stop on either
the rest occurrence of the pattern, or upon reaching the
end of the text (Pandiselvam et al., 2014). The pattern
matching starts with matching the first character of the
pattern with the first character of the text. If the match
doesn’t find then it moves forward to the second
character of the text and again compares the first
character of the pattern with the second character of the
text. In case if the match finds then moves to the second
character of the pattern comparing it with the next
character of the text. Example for BF is shown in Fig.2.

Proceedings of 8th International Research Conference, KDU, Published November 2015

55

Figure 2. Brute Force Matching Example

2) Boyer-Moore Horspool Algorithm (BMH)
The Boyer-Moore (BM) algorithm scans the characters of
the pattern from right to left beginning with the
rightmost one and performs the comparisons from right
to left (Rasool et al.,2012). In case of a mismatch (or a
complete match of the whole pattern) it uses two pre-
computed functions to shift the window to the right (Fig.
3) (Rasool et al.,2012).These two shift functions are
called the good-suffix shift(also called matching shift) and
the bad-character shift(also called the occurrence shift)
(Rasool et al.,2012).

Figure 3. Overview of BMH algorithm

BMH is the simplification of the Boyer-Moore algorithm.
The string being searched for is pre-processed to build a
table that contains the length to shift when a bad match
occurs. The BM algorithm creates the second “good
suffix” table. Then the string to find is searched from the
last character to the first. The bad match table is used to
skip characters when a mismatch occurs. It contains the
values for every character in the pattern.

value = length -index -1 ; (1)
 where value of every remaining letter=length

Table 1. Bad Match Table

Letter T E A M S *

Value 8 6 2 3 1 8

Example for BMH algorithm is shown in Fig.4 by using the
shift values of Table 1. Equation (1) is used to calculate
the values.

3) Knuth-Morris-Pratt Algorithm (KMP)
The string being searched for in KMP is pre-processed to
build a table of prefixes which is calculated for the
chosen substring before the beginning of the matching
phase. The matching starts with the left-most character
of the pattern. The prefix table is used when a mismatch
occurs. As there are two stages, the following algorithm
can be used to create the prefix table (Table 2).

Figure 4. Boyer Moore Horspool Matching Example

Begin
length=Length of P
Prefix[1]=0
a=0
for b=2 upto length step 1 do
while a>0 & P[a+1]≠P[b] do
a=Prefix[a]
if P[a+1]=P[b] then
a=a+1
Prefix[b]=a
return Prefix
End

Proceedings of 8th International Research Conference, KDU, Published November 2015

56

Table 2.Prefix Table

 1 2 3 4 5 6 7 8

P C O C A C O L A

Prefix 0 0 1 0 1 2 0 0

Then for the second stage to match the pattern the
following algorithm can be used.

Begin
i=1,j=1,k=1
while n-k>=m do
while j<=m & T[i]=P[j] do
i=i+1
j=j+1
if j>m then output k
if Prefix[j-1]>0 then
k=i- Prefix[j-1]
else
if j=k then i=i+1
k=1
if j>1 then j=Prefix[j-1]+1
End

4) Rabin Karp Algorithm (RK)
This is the augmented version of Naïve approach by
applying a powerful programming technique called hash
function. At the pre-processing stage it calculates the
hash value of pattern P (with m characters) with the hash
value for each m-character substring of text T. Then it
compares the numerical values instead of comparing the
actual symbols. If any match is found, it compares the
pattern with the substring by naive approach. Otherwise
it shifts to next substring of T to compare with P using the
hash values. So the performance of RK algorithm
depends on the efficient computation of hash value.

The strings can be treated as the array of characters.
Characters can be interpreted as integers, with their
exact values depending on what type of encoding is being
used (e.g. ASCII, Unicode). So the strings can be treated
as array of integers.

Consider an M character sequence as an M-digit number
in base R. The Equation (2) is to find the subsequence of
string where ti is the integer at ith position (Sedgewick
&Wayne, 2011). Equation (3) is used to determine the
hash value of the specified sequence where Q is a large
prime number (Sedgewick &Wayne, 2011).

xi =ti RM–1 + ti+1 RM–2 + … + ti+M–1 R0 (2)
H(xi) = ti RM–1 + ti+1 RM–2 + … + ti+M–1 R0 (mod Q) (3)

Furthermore, given xi we can compute xi+1 for the next
subsequence t[i+1 ..i+M] in constant time, as in Equation
(4):
xi+1 = (xi – t i*RM–1) R + t i + M (4)

Then the Equation (5) can be used to calculate the hash
value of the next subsequence (Sedgewick &Wayne, 2011).

H(xi+1)= (xi – t i*RM–1) R + t i + M (mod Q) (5)

B. Time Complexity

Table 3 summarizes the time complexity of the selected

algorithms in this research (Pandiselvam et al., 2014;

<alg.csie.ncnu.edu.tw>). Π is the number of storing

characters in BMH algorithm.

Table 3: Time complexity of algorithms

Algorithm Pre-processing Searching Execution Time

BF No O(nm) O(nm)

BMH O(m+π) time

complexity

O(π) space

complexity

O(mn) O(mn)

KMP O(m) O(n) O(m+n)

RK O(m) O(mn) O(mn)

C. Previous research studies
The time performance of exact string pattern matching
can be greatly improved if an efficient algorithm is used
(Lovis and Baud, 2000). According to Pandiselvam et al
(2014), the string matching algorithms were studied with
biological sequences such as DNA and Proteins. It was
analysed that KMP algorithm is relatively easier to
implement because it never needs to move backwards in
the input sequence and requires extra space. RK
algorithm is used to detect the plagiarism which requires
additional space for matching. BF algorithm does not
require pre-processing of the text or the pattern, but the
problem is its slowness and it rarely produces efficient
result (Pandiselvam et. al, 2014). Also the BM algorithm is
extremely fast for on large sequences, it avoids lots of
needless comparisons by significantly pattern relative to
text (Pandiselvam et. al, 2014).Based on the study of
Kumar et.al (2011), and the best algorithm for usual
searching purposes is BM while the best algorithm for
long patterns and long payload text is KMP algorithm.
This comparison had done for the algorithms for virus-
signature detection.

Proceedings of 8th International Research Conference, KDU, Published November 2015

57

Rasool et.al (2012) had done a research to compare the
matching efficiencies of the string matching algorithms
by searching speed, pre-processing time, matching time
and the key ideas used in those algorithms. It was
observed that performance of string matching algorithm
was based on selection of algorithms used and also on
network bandwidth. It was concluded that Boyer Moore
and KMP string matching algorithms are efficient. Also it
showed that BM Algorithm is fast in the case of larger
alphabet. KMP decreased the time of searching
compared to the Brute Force algorithm (Rasool et.al,
2012).

The main drawback of the Boyer-Moore type algorithms
is the pre-processing time and the space required, which
depends on the alphabet size and/or the pattern size
(Baeza-Yates, 2002). So if the pattern is small it is better
to use the BF algorithm (Baeza-Yates, 2002). If the
alphabet size is large, then the Knuth-Morris-Pratt
algorithm is a good choice (Baeza-Yates, 2002). It
concluded that in all the other cases, in particular for long
texts, the Boyer-Moore algorithm is better. Finally, the
Horspool version of the BM algorithm is the best
algorithm, according to execution time, for almost all
pattern lengths (Baeza-Yates, 2002).

Considering the growing amount of text handled in the
electronic patient record it was concluded that The BMH
algorithm is a fast and easy-to-implement algorithm and
better performed than BF algorithm (Lovis and Baud,
2000). As there were number of researches available for
the comparison of different string matching algorithms,
this research compares four different widely known
algorithms based on the pattern length and pattern
placement within the string.

III. RESEARCH MODEL AND HYPOTHESES
The literature identified that the searching speed is
affected by the algorithm with the mediation factors of
the length of the pattern and the placement of the
pattern. The research model which was used for this
research is in Fig.5.

Figure 5. Research Model

Therefore the null hypotheses of the research based on
Fig.5 are as follows:

H1: All the algorithms have equal searching speed on
average
H2: All the pattern lengths have equal searching speed on
average
H3: All the pattern placements have equal searching
speed on average
H4: Algorithm and pattern lengths are independent or
that interaction effect is not present
H5: Algorithm and pattern placements are independent or
that interaction effect is not present

IV. RESEARCH METHODOLOGY

All algorithms were implemented in Java language. The
tests were conducted on a 2.5GHz Intel(R) Core(TM) i5-
2450M processor with 4GB RAM. All the under- going
processes are stopped to minimize the system
interruptions and operating system processors. All the
algorithms are tested in a similar environment.

The target string was an English text consisting with
letters, spaces, commas and end-of line separators. The
string consisted of 400 words and 2466 characters
(including spaces).

The parameters of the each function calls used two string
arguments and two integer arguments. All the functions
have been implemented using the same function
prototype intSearchAlgorithm (String txt, String pattern,
int N, int M) where txt is the target string and pattern is
the string which was going to match. N and M are the
lengths of target and the pattern respectively. The
functions returned -1 when the match was not found or
when an error occurred, or else it returned the index of
the first occurrence within the target. Pre-processing and
computation of hash tables were done within the
functions itself and the time cost was allocated to that
function. Time for the function execution was measured
in System.nanoTime().

The measurements were recorded for the increased size
of pattern length and different placements of the pattern
within the target string. The each step was repeated for
30 iterations and the arithmetic mean was taken for the
analysis. The overview of the method used as in Fig.6.

Algorithm

Pattern Placement

Pattern Length

Searching
Speed

H1

H2

H3

H4

H5

Proceedings of 8th International Research Conference, KDU, Published November 2015

58

Figure 6. Overview of methodology

V. ANALYSIS
Statistical Analysis was performed using the SPSS 20
software. The statistical method Analysis of Variance
(ANOVA) was used to compare the mean differences
among and between the four algorithms that were
selected. The plot of the data shows the variation among
the algorithms with respect to the size of the patterns
and the placement of the patterns within the target. The
two-way ANOVA was used as there were two
independent variables which were going to test the
interaction on a continuous dependent variable, time
complexity. Turkey HSD test was used to find the
comparisons between the independent factors which
have a significant difference of mean time.

VI. RESULTS
A. Comparison of algorithm and character length
Fig.7 shows the estimated marginal means of time over
the pattern character length over the algorithms.
According to Fig.7, the BMH algorithm has the lowest
marginal mean time and RK algorithm has the highest
marginal mean time over the pattern length. The mean
time decreases in KMP and BMH when the pattern length
increases. But for the RK algorithm, the marginal mean
time increases when the pattern length increases. Also
the KMP and BF gets slightly close when the pattern
length increases.

Figure 7. Marginal mean of time over pattern length

According to the significant value (p=0.008) in Table 4,
the hypothesis H4 is rejected. So there is a statistically
significant interaction between the algorithm and the
pattern length at p=0.008 level. According to the
significant values (p=0.000 and p=0.24), the hypothesis H1

is rejected and hypothesis H2 is not rejected at 5%
significance level. So there is a statistically significant
difference in mean time between the algorithms. But
there is no statistically significant difference between the
pattern length over the mean time (p=0.24).

Table 4.Results of ANOVA

When comparing the mean time of the algorithms there
is a statistical significant difference between all the
algorithms except between KMP and BF where it shows
very small difference at large pattern lengths (Table 5).

Proceedings of 8th International Research Conference, KDU, Published November 2015

59

Table 5.Multiple Comparisons of Algorithms

B. Comparison of algorithm and pattern placement
Fig.8 shows the estimated marginal means of time over
the pattern placement over the algorithms. According to
Fig.8, when the pattern is at the beginning of the target
string the BF algorithm has the lowest mean time while
KMP has the highest mean time. But when the pattern is
moving to the end of the target, the mean time is
increasing in BF algorithm. RK algorithm has the highest
mean time when the pattern is at the end. When the
pattern is at the end, BMH shows the lowest mean time.

Figure 8. Marginal means over pattern placement

Table 6. Results of ANOVA

According to the significant value (p<0.05) in Table 6, the

hypothesis H5 is rejected. So there is a statistically

significant interaction between the algorithm and the

pattern placement at p<0.05 significant level. Also

according to the significant value (p<0.05) the hypothesis

H3 is rejected. So there is a statistically significant the

mean time difference between the pattern placements.

Table 7. Multiple Comparisons of Pattern placements

VII.CONCLUSION

BMH algorithm is the fast and easy to implement
algorithm for string matching. Among the four algorithms
BMH is the fastest algorithm without considering the
pattern length and pattern placement. RK is the slowest
algorithm when increasing the pattern length and the
pattern placement. The four algorithms have significant
differences of the mean time of algorithm execution. Also
there are significant differences of the mean time among
pattern placement. Both the KMP and BF algorithms have
very small differences of mean time across the pattern
length and pattern placement.

If there is a choice between the KMP and BF algorithms
for small patterns it is necessary to use BF, but when the
pattern is increasing both are possible to use. Also when
the pattern places at the end of the target it is possible to
use KMP rather than BF.

ACKNOWLEDGEMENT

I would like to acknowledge all my colleagues and
academic staff who supported me to fulfil this
endeavour. Also I would give my sincere gratitude to my
be-loved husband for giving me full support on this time.

REFERENCES

Horspool Algorithm, [Online]
<alg.csie.ncnu.edu.tw/course/StringMatching/Horspool.p
pt>

Proceedings of 8th International Research Conference, KDU, Published November 2015

60

Kumar, A., Sharma,V., Kumar,S.(2011),A comparative
analysis of various exact string matching algorithms for
Virus-Signature Detection, First International Conference
on Emerging Trends in Soft Computing and ICT (SCICT-
2011)

Pandiselvam.P, Marimuthu.T, Lawrance.R.(2014), A
Comparative Study on String Matching Algorithm of
Biological Sequences, International Conference on
Intelligent Computing

Rasool, A., Tiwari, A., Singla.G., Khare, N., (2012), String
Matching Algorithms: A Comparative Analysis,
International Journal of Computer Science and
Information Technologies (IJCSIT), 3 (2), pp.3394 – 3397

Sedgewick,R. & Wayne,K.(2011), Algorithms, 4thEdition,
Pearson Education Inc.

Baeza-Yates, R.A (2002), String Searching Algorithms
[Online]
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.ht
m

Lovis,C. and Baud, R.H.(2000), Fast Exact String Pattern
matching Algorithms Adapted to the Characteristics of
the Medical Language, Journal of the American Medical
Informatics Association, 7(4):pp.378-91

BIOGRAPHY OF AUTHORS

Dushyanthi Udeshika Vidanagama is a
probationary lecturer in the Department
of IT, Faculty of Computing in Kotelawala
Defence University, Sri Lanka.
Dushyanthi earned her Master of Science
in Management and Information

Technology. Her teaching and research interests include
Database Management Systems, Web Technologies, E-
Learning and XML Databases.

http://arxiv.org/find/cs/1/au:+P_P/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+T_M/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+R_L/0/1/0/all/0/1
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm
http://www.researchgate.net/journal/1067-5027_Journal_of_the_American_Medical_Informatics_Association
http://www.researchgate.net/journal/1067-5027_Journal_of_the_American_Medical_Informatics_Association

